Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Health Phys ; 125(6): 450-451, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37874604
2.
Health Phys ; 125(3): 207-227, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37294947

ABSTRACT

ABSTRACT: The purpose of this paper is to address the public fear that is usually associated with low-level radiation exposure situations. Its ultimate objective is to provide persuasive assurances to informed but skeptical members of the public that exposure situations involving low-level radiation are not to be feared. Unfortunately, just acquiescing to an unsupportive public fear of low-level radiation is not without consequences. It is causing severe disruptions to the benefits that harnessed radiation can produce for the well-being of all humanity. In this pursuit, the paper provides the scientific and epistemological basis needed for regulatory reform by reviewing the history in quantifying, understanding, modeling, and controlling radiation exposure, including some of the evolving contributions of the United Nations Scientific Committee on the Effects of Atomic Radiation, the International Commission on Radiological Protection, and the myriad of international and intergovernmental organizations establishing radiation safety standards. It also explores the various interpretations of the linear no-threshold model and the insights gained from radiation pathologists, radiation epidemiologists, radiation biologists, and radiation protectionists. Given that the linear no-threshold model is so deeply imbedded in current radiation exposure guidance, despite the lack of a solid scientific base on the actually proven radiation effects at low-doses, the paper suggests near-term ways to improve regulatory implementation and better serve the public by excluding and/or exempting trivial low-dose situations from the regulatory scope. Several examples are given where the unsubstantiated public fear of low-level radiation has resulted in crippling the beneficial effects that controlled radiation offers to a modern society.


Subject(s)
Radiation Exposure , Radiation Injuries , Radiation Protection , Humans , Radiation Injuries/prevention & control , Radiation Exposure/adverse effects , Background Radiation , Radiation Dosage
3.
Health Phys ; 124(5): 407-424, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36989223

ABSTRACT

ABSTRACT: The fear of radiation has been present almost since the discovery of radiation, but has intensified since the "dawn of the atomic age" over 75 y ago. This fear has often served as an impediment to the safe and beneficial uses of radiation and radioactive material. The underlying causes of such fear are varied, can be complex, and are often not associated with any scientific knowledge or understanding. The authors believe that a clear understanding of the current scientific knowledge and understanding of the effects of radiation exposure may be useful in helping to allay some of the fear of radiation. This manuscript attempts to (1) address several scientific questions that we believe have contributed to the fear of radiation, (2) review the data derived from research that can be used to address these questions, and (3) summarize how the results of such scientific research can be used to help address the fear of low-dose and low-dose-rate radiation. Several examples of how fear of radiation has affected public perception of radiological events are discussed, as well as a brief history of the etiology of radiation fear. Actions needed to reduce the public fear of radiation and help fulfill the full societal benefits of radiation and radioactive materials are suggested.


Subject(s)
Radiation Exposure , Radiation Protection , Radiation Protection/methods , Radiation Exposure/adverse effects , Radiobiology , Fear
4.
Dose Response ; 18(3): 1559325820949729, 2020.
Article in English | MEDLINE | ID: mdl-32913426

ABSTRACT

Prior to observing low-dose-induced cell signaling and adaptive protection, radiogenic stochastic effects were assumed to be linearly related to absorbed dose. Now, abundant data prove the occurrence of radiogenic adaptive protection specifically at doses below ∼ 200 mGy (with some data suggesting such protection at a dose even higher than 200 mGy). Moreover, cells do not thrive properly when deprived of radiation below background dose. Two threshold doses need be considered in constructing a valid dose-response relationship. With doses beginning to rise from zero, cells increasingly escape radiation deprivation. The dose at which radiation-deprived cells begin to function homeostatically provides dose Threshold A. With further dose increase, adaptive protection becomes prominent and then largely disappears at acute doses above ∼ 200 mGy. The dose at which damage begins to override protection defines Threshold B. Thresholds A and B should be terms in modeling dose-response functions. Regarding whole-body responses, current data suggest for low-LET acute, non-chronic, irradiation a Threshold B of about 100 mGy prevails, except for leukemia and probably some other malignancies, and for chronic, low dose-rate irradiation where the Threshold B may well reach 1 Gy per year. A new Research and Development Program should determine individual Thresholds A and B for various radiogenic cell responses depending on radiation quality and target.

7.
Science ; 296(5577): 2333-5; author reply 2333-5, 2002 Jun 28.
Article in English | MEDLINE | ID: mdl-12090272
SELECTION OF CITATIONS
SEARCH DETAIL
...