Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(15): 21153-21162, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510197

ABSTRACT

The flatness, compactness and high-capacity data storage capability make metasurfaces well-suited for holographic information recording and generation. However, most of the metasurface holograms are static, not allowing a dynamic modification of the phase profile after fabrication. Here, we propose and demonstrate a dynamic metasurface hologram by utilizing hierarchical reaction kinetics of magnesium upon a hydrogenation/dehydrogenation process. The metasurface is composed of composite gold/magnesium V-shaped nanoantennas as building blocks, leading to a reconfigurable phase profile in a hydrogen/oxygen environment. We have developed an iterative hologram algorithm based on the Fidoc method to build up a quantified phase relation, which allows the reconfigurable phase profile to reshape the reconstructed image. Such a strategy introduces actively controllable dynamic pixels through a hydrogen-regulated chemical process, showing unprecedented potentials for optical encryption, information processing and dynamic holographic image alteration.

2.
Nano Lett ; 17(5): 3171-3175, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28409930

ABSTRACT

Security of optical information is of great importance in modern society. Many cryptography techniques based on classical and quantum optics have been widely explored in the linear optical regime. Nonlinear optical encryption in which encoding and decoding involve nonlinear frequency conversions represents a new strategy for securing optical information. Here, we demonstrate that an ultrathin nonlinear photonic metasurface, consisting of meta-atoms with 3-fold rotational symmetry, can be used to hide optical images under illumination with a fundamental wave. However, the hidden image can be read out from second harmonic generation (SHG) waves. This is achieved by controlling the destructive and constructive interferences of SHG waves from two neighboring meta-atoms. In addition, we apply this concept to obtain gray scale SHG imaging. Nonlinear metasurfaces based on space variant optical interference open new avenues for multilevel image encryption, anticounterfeiting, and background free image reconstruction.

SELECTION OF CITATIONS
SEARCH DETAIL
...