Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Arthritis Rheum ; 64(11): 3626-3637, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22777600

ABSTRACT

OBJECTIVE: Hypocellularity resulting from chondrocyte death in the aftermath of mechanical injury is thought to contribute to posttraumatic osteoarthritis. However, we observed that nonviable areas in cartilage injured by blunt impact were repopulated within 7-14 days by cells that appeared to migrate from the surrounding matrix. The aim of this study was to assess our hypothesis that the migrating cell population included chondrogenic progenitor cells that were drawn to injured cartilage by alarmins. METHODS: Osteochondral explants obtained from mature cattle were injured by blunt impact or scratching, resulting in localized chondrocyte death. Injured sites were serially imaged by confocal microscopy, and migrating cells were evaluated for chondrogenic progenitor characteristics. Chemotaxis assays were used to measure the responses to chemokines, injury-conditioned medium, dead cell debris, and high mobility group box chromosomal protein 1 (HMGB-1). RESULTS: Migrating cells were highly clonogenic and multipotent and expressed markers associated with chondrogenic progenitor cells. Compared with chondrocytes, these cells overexpressed genes involved in proliferation and migration and underexpressed cartilage matrix genes. They were more active than chondrocytes in chemotaxis assays and responded to cell lysates, conditioned medium, and HMGB-1. Glycyrrhizin, a chelator of HMGB-1 and a blocking antibody to receptor for advanced glycation end products (RAGE), inhibited responses to cell debris and conditioned medium and reduced the numbers of migrating cells on injured explants. CONCLUSION: Injuries that caused chondrocyte death stimulated the emergence and homing of chondrogenic progenitor cells, in part via HMGB-1 release and RAGE-mediated chemotaxis. Their repopulation of the matrix could promote the repair of chondral damage that might otherwise contribute to progressive cartilage loss.


Subject(s)
Cartilage, Articular/injuries , Chondrocytes/cytology , Multipotent Stem Cells/cytology , Osteoarthritis, Knee/pathology , Stifle/injuries , Animals , Apoptosis/physiology , Cartilage, Articular/pathology , Cattle , Cell Differentiation/physiology , Cell Movement/physiology , Cells, Cultured , Chondrocytes/physiology , Multipotent Stem Cells/physiology , Osteoarthritis, Knee/etiology , Stifle/pathology , Transcriptome , Wounds, Nonpenetrating/pathology
2.
J Orthop Res ; 28(8): 1057-63, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20108345

ABSTRACT

Mechanical insult to articular cartilage kills chondrocytes, an event that may increase the risk of posttraumatic osteoarthritis. Recent reports indicate that antioxidants decrease impact-induced chondrocyte death, but the source(s) of oxidants, the time course of oxidant release, and the identity of the oxidative species generated in response to injury are unknown. A better understanding of these processes could lead to new treatments of acute joint injuries. To that end, we studied the kinetics and distribution of oxidant production in osteochondral explants subjected to a single, blunt-impact injury. We followed superoxide production by measuring the time-dependent accumulation of chondrocyte nuclei stained with the superoxide-sensitive probe dihydroethidium. The percentage of chondrocytes that were dihydroethidium-positive was 35% above baseline 10 min after impact, and 65% above baseline 60 min after impact. Most positive cells were found within and near areas contacted directly by the impact platen. Rotenone, an electron transport chain inhibitor, was used to test the hypothesis that mitochondria contribute to superoxide release. Rotenone treatment significantly reduced dihydroethidium staining, which remained steady at 15% above baseline for up to 60 min postimpact. Moreover, rotenone reduced chondrocyte death in impact sites by more than 40%, even when administered 2 h after injury (p < 0.001). These data show that much of the acute chondrocyte mortality caused by in vitro impact injuries results from superoxide release from mitochondria, and suggest that brief exposure to free radical scavengers could significantly improve chondrocyte viability following joint injury.


Subject(s)
Chondrocytes/drug effects , Rotenone/pharmacology , Superoxides/metabolism , Tibia/pathology , Animals , Cartilage, Articular/injuries , Cattle , Cell Survival/drug effects , Chondrocytes/physiology , Free Radical Scavengers/pharmacology , Mitochondria , Osteoarthritis/metabolism , Tibia/injuries , Tissue Culture Techniques
3.
J Bone Joint Surg Am ; 91(8): 1890-7, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19651946

ABSTRACT

BACKGROUND: Chondrocyte death has been linked to injury-induced oxidative damage, suggesting that antioxidants could substantially improve viability. However, since reactive oxygen species play roles in normal physiology, there are concerns that antioxidants may have deleterious side effects. To address these issues, we studied the effects of N-acetylcysteine, a potent free radical scavenger, on chondrocyte viability and cartilage proteoglycan content in an in vitro cartilage injury model. We hypothesized that treatment with N-acetylcysteine soon after an impact injury would have significant chondrocyte-sparing effects and would prevent injury-induced proteoglycan losses. METHODS: Bovine osteochondral explants were subjected to a single impact load with use of a drop-tower device. Chondrocyte viability was measured at multiple time points post-impact with use of fluorescent probes and confocal microscopy. Forty-eight hours after impact, the effects on viability of immediate post-impact treatment with N-acetylcysteine were compared with the effects of the caspase inhibitor N-CBZ-Val-Ala-Asp(O-Me) fluoromethyl ketone and those of the cell-membrane-stabilizing surfactant poloxamer 188. The effect of N-acetylcysteine on proteoglycan content was determined at seven and fourteen days post-impact. RESULTS: Chondrocyte viability declined sharply within an hour and reached a steady state within six to twelve hours after impact. Immediate treatment with N-acetylcysteine doubled the number of viable chondrocytes assayed forty-eight hours after impact, and this effect was significantly greater than that of N-CBZ-Val-Ala-Asp(O-Me) fluoromethyl ketone. Even when N-acetylcysteine treatment was delayed for up to four hours after injury, it still had significant positive effects on cell viability at forty-eight hours. Moreover, N-acetylcysteine treatment significantly improved proteoglycan content at the impact sites at both seven and fourteen days after injury. CONCLUSIONS: Treatment with N-acetylcysteine soon after a blunt impact injury can reduce chondrocyte death and proteoglycan loss measured seven to fourteen days after injury.


Subject(s)
Acetylcysteine/pharmacology , Cartilage/injuries , Cell Death/drug effects , Chondrocytes/drug effects , Free Radical Scavengers/pharmacology , Animals , Cattle , Cell Survival/drug effects , Oxidative Stress/drug effects , Proteoglycans/metabolism , Wounds, Nonpenetrating/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...