Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 8(14): 3380-3386, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28677392

ABSTRACT

High thermal stability and anisotropic molecular orientation enhance the performance of vapor-deposited organic semiconductors, but controlling these properties is a challenge in amorphous materials. To understand the influence of molecular shape on these properties, vapor-deposited glasses of three disk-shaped molecules were prepared. For all three systems, enhanced thermal stability is observed for glasses prepared over a wide range of substrate temperatures and anisotropic molecular orientation is observed at lower substrate temperatures. For two of the disk-shaped molecules, atomistic simulations of thin films were also performed and anisotropic molecular orientation was observed at the equilibrium liquid surface. We find that the structure and thermal stability of these vapor-deposited glasses results from high surface mobility and partial equilibration toward the structure of the equilibrium liquid surface during the deposition process. For the three molecules studied, molecular shape is a dominant factor in determining the anisotropy of vapor-deposited glasses.

2.
J Chem Phys ; 143(9): 094502, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26342372

ABSTRACT

Enhanced kinetic stability of vapor-deposited glasses has been established for a variety of glass organic formers. Several recent reports indicate that vapor-deposited glasses can be orientationally anisotropic. In this work, we present results of extensive molecular simulations that mimic a number of features of the experimental vapor deposition process. The simulations are performed on a generic coarse-grained model and an all-atom representation of N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), a small organic molecule whose vapor-deposited glasses exhibit considerable orientational anisotropy. The coarse-grained model adopted here is found to reproduce several key aspects reported in experiments. In particular, the molecular orientation of vapor-deposited glasses is observed to depend on substrate temperature during deposition. For a fixed deposition rate, the molecular orientation in the glasses changes from isotropic, at the glass transition temperature, Tg, to slightly normal to the substrate at temperatures just below Tg. Well below Tg, molecular orientation becomes predominantly parallel to the substrate. The all-atom model is used to confirm some of the equilibrium structural features of TPD interfaces that arise above the glass transition temperature. We discuss a mechanism based on distinct orientations observed at equilibrium near the surface of the film, which get trapped within the film during the non-equilibrium process of vapor deposition.

3.
Proc Natl Acad Sci U S A ; 112(14): 4227-32, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25831545

ABSTRACT

Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. We apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (Tsubstrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by Tsubstrate/Tg, where Tg is the glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form "stable glasses" with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. By showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics.

4.
J Chem Phys ; 142(13): 134504, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25854250

ABSTRACT

Vapor-deposited organic glasses can show enhanced kinetic stability relative to liquid-cooled glasses. When such stable glasses of model glassformers are annealed above the glass transition temperature Tg, they lose their thermal stability and transform into the supercooled liquid via constant velocity propagating fronts. In this work, we show that vapor-deposited glasses of an organic semiconductor, N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), also transform via propagating fronts. Using spectroscopic ellipsometry and a new high-throughput annealing protocol, we measure transformation front velocities for TPD glasses prepared with substrate temperatures (TSubstrate) from 0.63 to 0.96 Tg, at many different annealing temperatures. We observe that the front velocity varies by over an order of magnitude with TSubstrate, while the activation energy remains constant. Using dielectric spectroscopy, we measure the structural relaxation time of supercooled TPD. We find that the mobility of the liquid and the structure of the glass are independent factors in controlling the thermal stability of TPD films. In comparison to model glassformers, the transformation fronts of TPD have similar velocities and a similar dependence on TSubstrate, suggesting universal behavior. These results may aid in designing active layers in organic electronic devices with improved thermal stability.

5.
J Chem Phys ; 143(24): 244509, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26723694

ABSTRACT

AC chip nanocalorimetry is used to characterize vapor-deposited glasses of methyl-m-toluate (MMT). Physical vapor deposition can prepare MMT glasses that have lower heat capacity and significantly higher kinetic stability compared to liquid-cooled glasses. When heated, highly stable MMT glasses transform into the supercooled liquid via propagating fronts. We present the first quantitative analysis of the temporal and spatial uniformities of these transformation fronts. The front velocity varies by less than 4% over the duration of the transformation. For films 280 nm thick, the transformation rates at different spatial positions in the film differ by about 25%; this quantity may be related to spatially heterogeneous dynamics in the stable glass. Our characterization of the kinetic stability of MMT stable glasses extends previous dielectric experiments and is in excellent agreement with these results.

SELECTION OF CITATIONS
SEARCH DETAIL
...