Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Epilepsia ; 63(5): 1211-1224, 2022 05.
Article in English | MEDLINE | ID: mdl-35188269

ABSTRACT

OBJECTIVE: STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase. Membrane-bound STEP61 is the only isoform expressed in hippocampus and cortex. Genetic deletion of STEP enhances excitatory synaptic currents and long-term potentiation in the hippocampus. However, whether STEP61 affects seizure susceptibility is unclear. Here we investigated the effects of STEP inhibitor TC-2153 on seizure propensity in a murine model displaying kainic acid (KA)-induced status epilepticus and its effect on hippocampal excitability. METHODS: Adult male and female C57BL/6J mice received intraperitoneal injection of either vehicle (2.8% dimethylsulfoxide [DMSO] in saline) or TC-2153 (10 mg/kg) and then either saline or KA (30 mg/kg) 3 h later before being monitored for behavioral seizures. A subset of female mice was ovariectomized (OVX). Acute hippocampal slices from Thy1-GCaMP6s mice were treated with either DMSO or TC-2153 (10 µM) for 1 h, and then incubated in artificial cerebrospinal fluid (ACSF) and potassium chloride (15 mM) for 2 min prior to live calcium imaging. Pyramidal neurons in dissociated rat hippocampal culture (DIV 8-10) were pre-treated with DMSO or TC-2153 (10 µM) for 1 h before whole-cell patch-clamp recording. RESULTS: TC-2153 treatment significantly reduced KA-induced seizure severity, with greater trend seen in female mice. OVX abolished this TC-2153-induced decrease in seizure severity in female mice. TC-2153 application significantly decreased overall excitability of acute hippocampal slices from both sexes. Surprisingly, TC-2153 treatment hyperpolarized resting membrane potential and decreased firing rate, sag voltage, and hyperpolarization-induced current (Ih ) of cultured hippocampal pyramidal neurons. SIGNIFICANCE: This study is the first to demonstrate that pharmacological inhibition of STEP with TC-2153 decreases seizure severity and hippocampal activity in both sexes, and dampens hippocampal neuronal excitability and Ih . We propose that the antiseizure effects of TC-2153 are mediated by its unexpected action on suppressing neuronal intrinsic excitability.


Subject(s)
Dimethyl Sulfoxide , Hippocampus , Animals , Benzothiepins , Dimethyl Sulfoxide/adverse effects , Dimethyl Sulfoxide/metabolism , Female , Kainic Acid/pharmacology , Male , Mice , Mice, Inbred C57BL , Rats , Seizures/chemically induced , Seizures/metabolism
2.
Sci Rep ; 10(1): 386, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941974

ABSTRACT

Polycystin 2 (PC2 or TRPP1, formerly TRPP2) is a calcium-permeant Transient Receptor Potential (TRP) cation channel expressed primarily on the endoplasmic reticulum (ER) membrane and primary cilia of all cell and tissue types. Despite its ubiquitous expression throughout the body, studies of PC2 have focused primarily on its role in the kidney, as mutations in PC2 lead to the development of autosomal dominant polycystic kidney disease (ADPKD), a debilitating condition for which there is no cure. However, the endogenous role that PC2 plays in the regulation of general cellular homeostasis remains unclear. In this study, we measure how PC2 expression changes in different pathological states, determine that its abundance is increased under conditions of cellular stress in multiple tissues including human disease, and conclude that PC2-deficient cells have increased susceptibility to cell death induced by stress. Our results offer new insight into the normal function of PC2 as a ubiquitous stress-sensitive protein whose expression is up-regulated in response to cell stress to protect against pathological cell death in multiple diseases.


Subject(s)
Acute Kidney Injury/pathology , Cell Death , Heart Diseases/pathology , Non-alcoholic Fatty Liver Disease/pathology , Protective Agents/metabolism , Reperfusion Injury/pathology , TRPP Cation Channels/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Animals , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Heart Diseases/etiology , Heart Diseases/metabolism , Homeostasis , Humans , Male , Mice , Mice, Inbred C57BL , Mutation , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , TRPP Cation Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...