Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cells ; 12(18)2023 09 19.
Article in English | MEDLINE | ID: mdl-37759524

ABSTRACT

Islets prepared for transplantation into type 1 diabetes patients are exposed to compromising intrinsic and extrinsic factors that contribute to early graft failure, necessitating repeated islet infusions for clinical insulin independence. A lack of reliable pre-transplant measures to determine islet viability severely limits the success of islet transplantation and will limit future beta cell replacement strategies. We applied hyperspectral fluorescent microscopy to determine whether we could non-invasively detect islet damage induced by oxidative stress, hypoxia, cytokine injury, and warm ischaemia, and so predict transplant outcomes in a mouse model. In assessing islet spectral signals for NAD(P)H, flavins, collagen-I, and cytochrome-C in intact islets, we distinguished islets compromised by oxidative stress (ROS) (AUC = 1.00), hypoxia (AUC = 0.69), cytokine exposure (AUC = 0.94), and warm ischaemia (AUC = 0.94) compared to islets harvested from pristine anaesthetised heart-beating mouse donors. Significantly, with unsupervised assessment we defined an autofluorescent score for ischaemic islets that accurately predicted the restoration of glucose control in diabetic recipients following transplantation. Similar results were obtained for islet single cell suspensions, suggesting translational utility in the context of emerging beta cell replacement strategies. These data show that the pre-transplant hyperspectral imaging of islet autofluorescence has promise for predicting islet viability and transplant success.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Humans , Animals , Mice , Hyperspectral Imaging , Islets of Langerhans/diagnostic imaging , Cytokines , Hypoxia
2.
Diabetologia ; 66(8): 1516-1531, 2023 08.
Article in English | MEDLINE | ID: mdl-37311878

ABSTRACT

AIMS/HYPOTHESIS: NF-κB activation unites metabolic and inflammatory responses in many diseases yet less is known about the role that NF-κB plays in normal metabolism. In this study we investigated how RELA impacts the beta cell transcriptional landscape and provides network control over glucoregulation. METHODS: We generated novel mouse lines harbouring beta cell-specific deletion of either the Rela gene, encoding the canonical NF-κB transcription factor p65 (ßp65KO mice), or the Ikbkg gene, encoding the NF-κB essential modulator NEMO (ßNEMOKO mice), as well as ßA20Tg mice that carry beta cell-specific and forced transgenic expression of the NF-κB-negative regulator gene Tnfaip3, which encodes the A20 protein. Mouse studies were complemented by bioinformatics analysis of human islet chromatin accessibility (assay for transposase-accessible chromatin with sequencing [ATAC-seq]), promoter capture Hi-C (pcHi-C) and p65 binding (chromatin immunoprecipitation-sequencing [ChIP-seq]) data to investigate genome-wide control of the human beta cell metabolic programme. RESULTS: Rela deficiency resulted in complete loss of stimulus-dependent inflammatory gene upregulation, consistent with its known role in governing inflammation. However, Rela deletion also rendered mice glucose intolerant because of functional loss of insulin secretion. Glucose intolerance was intrinsic to beta cells as ßp65KO islets failed to secrete insulin ex vivo in response to a glucose challenge and were unable to restore metabolic control when transplanted into secondary chemical-induced hyperglycaemic recipients. Maintenance of glucose tolerance required Rela but was independent of classical NF-κB inflammatory cascades, as blocking NF-κB signalling in vivo by beta cell knockout of Ikbkg (NEMO), or beta cell overexpression of Tnfaip3 (A20), did not cause severe glucose intolerance. Thus, basal p65 activity has an essential and islet-intrinsic role in maintaining normal glucose homeostasis. Genome-wide bioinformatic mapping revealed the presence of p65 binding sites in the promoter regions of specific metabolic genes and in the majority of islet enhancer hubs (~70% of ~1300 hubs), which are responsible for shaping beta cell type-specific gene expression programmes. Indeed, the islet-specific metabolic genes Slc2a2, Capn9 and Pfkm identified within the large network of islet enhancer hub genes showed dysregulated expression in ßp65KO islets. CONCLUSIONS/INTERPRETATION: These data demonstrate an unappreciated role for RELA as a regulator of islet-specific transcriptional programmes necessary for the maintenance of healthy glucose metabolism. These findings have clinical implications for the use of anti-inflammatories, which influence NF-κB activation and are associated with diabetes.


Subject(s)
Glucose Intolerance , Transcription Factor RelA , Animals , Humans , Mice , Chromatin , Glucose , NF-kappa B/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
3.
Kidney Int ; 103(6): 1105-1119, 2023 06.
Article in English | MEDLINE | ID: mdl-37097268

ABSTRACT

Nuclear factor κB (NF-κB) activation is a deleterious molecular mechanism that drives acute kidney injury (AKI) and manifests in transplanted kidneys as delayed graft function. The TNFAIP3 gene encodes A20, a cytoplasmic ubiquitin ligase and a master negative regulator of the NF- κB signaling pathway. Common population-specific TNFAIP3 coding variants that reduce A20's enzyme function and increase NF- κB activation have been linked to heightened protective immunity and autoimmune disease, but have not been investigated in AKI. Here, we functionally identified a series of unique human TNFAIP3 coding variants linked to the autoimmune genome-wide association studies single nucleotide polymorphisms of F127C; namely F127C;R22Q, F127C;G281E, F127C;W448C and F127C;N449K that reduce A20's anti-inflammatory function in an NF- κB reporter assay. To investigate the impact of TNFAIP3 hypomorphic coding variants in AKI we tested a mouse Tnfaip3 hypomorph in a model of ischemia reperfusion injury (IRI). The mouse Tnfaip3 coding variant I325N increases NF- κB activation without overt inflammatory disease, providing an immune boost as I325N mice exhibit enhanced innate immunity to a bacterial challenge. Surprisingly, despite exhibiting increased intra-kidney NF- κB activation with inflammation in IRI, the kidney of I325N mice was protected. The I325N variant influenced the outcome of IRI by changing the dynamic expression of multiple cytoprotective mechanisms, particularly by increasing NF- κB-dependent anti-apoptotic factors BCL-2, BCL-XL, c-FLIP and A20, altering the active redox state of the kidney with a reduction of superoxide levels and the enzyme super oxide dismutase-1, and enhancing cellular protective mechanisms including increased Foxp3+ T cells. Thus, TNFAIP3 gene variants represent a kidney and population-specific molecular factor that can dictate the course of IRI.


Subject(s)
Acute Kidney Injury , NF-kappa B , Humans , Mice , Animals , NF-kappa B/metabolism , Transcription Factors/genetics , Ubiquitin , Genome-Wide Association Study , Ligases , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Acute Kidney Injury/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
4.
Diabetes ; 72(6): 758-768, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36929171

ABSTRACT

Intrahepatic islet transplantation for type 1 diabetes is limited by the need for multiple infusions and poor islet viability posttransplantation. The development of alternative transplantation sites is necessary to improve islet survival and facilitate monitoring and retrieval. We tested a clinically proven biodegradable temporizing matrix (BTM), a polyurethane-based scaffold, to generate a well-vascularized intracutaneous "neodermis" within the skin for islet transplantation. In murine models, BTM did not impair syngeneic islet renal-subcapsular transplant viability or function, and it facilitated diabetes cure for over 150 days. Furthermore, BTM supported functional neonatal porcine islet transplants into RAG-1-/- mice for 400 days. Hence, BTM is nontoxic for islets. Two-photon intravital imaging used to map vessel growth through time identified dense vascular networks, with significant collagen deposition and increases in vessel mass up to 30 days after BTM implantation. In a preclinical porcine skin model, BTM implants created a highly vascularized intracutaneous site by day 7 postimplantation. When syngeneic neonatal porcine islets were transplanted intracutaneously, the islets remained differentiated as insulin-producing cells, maintained normal islet architecture, secreted c-peptide, and survived for over 100 days. Here, we show that BTM facilitates formation of an islet-supportive intracutaneous neodermis in a porcine preclinical model, as an alternative islet-transplant site. ARTICLE HIGHLIGHTS: Human and porcine pancreatic islets were transplanted into a fully vascularized biodegradable temporizing matrix (Novosorb) that creates a unique intracutaneous site outside of the liver in a large-animal preclinical model. The intracutaneous prevascularized site supported pancreatic islet survival for 3 months in a syngeneic porcine-transplant model. Pancreatic (human and porcine) islet survival and function were demonstrated in an intracutaneous site outside of the liver for the first time in a large-animal preclinical model.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Swine , Humans , Animals , Mice , Islets of Langerhans Transplantation/methods , Graft Survival , Islets of Langerhans/blood supply , Diabetes Mellitus, Type 1/surgery , Collagen
5.
Comput Struct Biotechnol J ; 21: 1851-1859, 2023.
Article in English | MEDLINE | ID: mdl-36915378

ABSTRACT

Islets transplanted for type-1 diabetes have their viability reduced by warm ischemia, dimethyloxalylglycine (DMOG; hypoxia model), oxidative stress and cytokine injury. This results in frequent transplant failures and the major burden of patients having to undergo multiple rounds of treatment for insulin independence. Presently there is no reliable measure to assess islet preparation viability prior to clinical transplantation. We investigated deep morphological signatures (DMS) for detecting the exposure of islets to viability compromising insults from brightfield images. Accuracies ranged from 98 % to 68 % for; ROS damage, pro-inflammatory cytokines, warm ischemia and DMOG. When islets were disaggregated to single cells to enable higher throughput data collection, good accuracy was still obtained (83-71 %). Encapsulation of islets reduced accuracy for cytokine exposure, but it was still high (78 %). Unsupervised modelling of the DMS for islet preparations transplanted into a syngeneic mouse model was able to predict whether or not they would restore glucose control with 100 % accuracy. Our strategy for constructing DMS' is effective for the assessment of islet pre-transplant viability. If translated into the clinic, standard equipment could be used to prospectively identify non-functional islet preparations unable to contribute to the restoration of glucose control and reduce the burden of unsuccessful treatments.

6.
Xenotransplantation ; 28(3): e12669, 2021 05.
Article in English | MEDLINE | ID: mdl-33316848

ABSTRACT

BACKGROUND: Neonatal porcine islets (NPIs) can restore glucose control in mice, pigs, and non-human primates, representing a potential abundant alternative islet supply for clinical beta cell replacement therapy. However, NPIs are vulnerable to inflammatory insults that could be overcome with genetic modifications. Here, we demonstrate in a series of proof-of-concept experiments the potential of the cytoplasmic ubiquitin-editing protein A20, encoded by the TNFAIP3 gene, as an NPI cytoprotective gene. METHODS: We forced A20 expression in NPI grafts using a recombinant adenovirus 5 (Ad5) vector and looked for impact on TNF-stimulated NF-κB activation and NPI graft function. As adeno-associated vectors (AAV) are clinically preferred vectors but exhibit poor transduction efficacy in NPIs, we next screened a series of AAV serotypes under different transduction protocols for their ability achieve high transduction efficiency and suppress NPI inflammation without impacting NPI maturation. RESULTS: Forcing the expression of A20 in NPI with Ad5 vector blocked NF-κB activation by inhibiting IκBα phosphorylation and degradation, and reduced the induction of pro-inflammatory genes Cxcl10 and Icam1. A20-expressing NPIs also exhibited superior functional capacity when transplanted into diabetic immunodeficient recipient mice, evidenced by a more rapid return to euglycemia and improved GTT compared to unmodified NPI grafts. We found AAV2 combined with a 14-day culture period maximized NPI transduction efficiency (>70% transduction rate), and suppressed NF-κB-dependent gene expression without adverse impact upon NPI maturation. CONCLUSION: We report a new protocol that allows for high-efficiency genetic modification of NPIs, which can be utilized to introduce candidate genes without the need for germline engineering. This approach would be suitable for preclinical and clinical testing of beneficial molecules. We also report for the first time that A20 is cytoprotective for NPI, such that A20 gene therapy could aid the clinical development of NPIs for beta cell replacement.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Animals , Dependovirus , Genetic Therapy , Genetic Vectors , Heterografts , Inflammation , Mice , Swine , Transplantation, Heterologous , Tumor Necrosis Factor alpha-Induced Protein 3
7.
JCI Insight ; 4(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31581152

ABSTRACT

Islet transplantation can restore lost glycemic control in type 1 diabetes subjects but is restricted in its clinical application by a limiting supply of islets and the need for heavy immune suppression to prevent rejection. TNFAIP3, encoding the ubiquitin editing enzyme A20, regulates the activation of immune cells by raising NF-κB signaling thresholds. Here, we show that increasing A20 expression in allogeneic islet grafts resulted in permanent survival for ~45% of recipients, and > 80% survival when combined with subtherapeutic rapamycin. Allograft survival was dependent upon Tregs and was antigen specific, and grafts showed reduced expression of inflammatory factors. Transplantation of islets with A20 containing a loss-of-function variant (I325N) resulted in increased RIPK1 ubiquitination and NF-κB signaling, graft hyperinflammation, and acute allograft rejection. Overexpression of A20 in human islets potently reduced expression of inflammatory mediators, with no impact on glucose-stimulated insulin secretion. Therapeutic administration of A20 raises inflammatory signaling thresholds to favor immune tolerance and promotes islet allogeneic survival. Clinically, this would allow for reduced immunosuppression and support the use of alternate islet sources.


Subject(s)
Immune Tolerance/physiology , Islets of Langerhans Transplantation , Tumor Necrosis Factor alpha-Induced Protein 3/physiology , Graft Survival , Humans , Transplantation, Homologous
8.
Nat Immunol ; 20(10): 1299-1310, 2019 10.
Article in English | MEDLINE | ID: mdl-31534238

ABSTRACT

Resisting and tolerating microbes are alternative strategies to survive infection, but little is known about the evolutionary mechanisms controlling this balance. Here genomic analyses of anatomically modern humans, extinct Denisovan hominins and mice revealed a TNFAIP3 allelic series with alterations in the encoded immune response inhibitor A20. Each TNFAIP3 allele encoded substitutions at non-catalytic residues of the ubiquitin protease OTU domain that diminished IκB kinase-dependent phosphorylation and activation of A20. Two TNFAIP3 alleles encoding A20 proteins with partial phosphorylation deficits seemed to be beneficial by increasing immunity without causing spontaneous inflammatory disease: A20 T108A;I207L, originating in Denisovans and introgressed in modern humans throughout Oceania, and A20 I325N, from an N-ethyl-N-nitrosourea (ENU)-mutagenized mouse strain. By contrast, a rare human TNFAIP3 allele encoding an A20 protein with 95% loss of phosphorylation, C243Y, caused spontaneous inflammatory disease in humans and mice. Analysis of the partial-phosphorylation A20 I325N allele in mice revealed diminished tolerance of bacterial lipopolysaccharide and poxvirus inoculation as tradeoffs for enhanced immunity.


Subject(s)
Poxviridae Infections/immunology , Poxviridae/physiology , Protein Domains/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Alleles , Animals , Extinction, Biological , Humans , Immunity , Inflammation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation, Missense/genetics , Phosphorylation
9.
Gut ; 67(12): 2142-2155, 2018 12.
Article in English | MEDLINE | ID: mdl-29080858

ABSTRACT

OBJECTIVE: Extensive molecular heterogeneity of pancreatic ductal adenocarcinoma (PDA), few effective therapies and high mortality make this disease a prime model for advancing development of tailored therapies. The p16-cyclin D-cyclin-dependent kinase 4/6-retinoblastoma (RB) protein (CDK4) pathway, regulator of cell proliferation, is deregulated in PDA. Our aim was to develop a novel personalised treatment strategy for PDA based on targeting CDK4. DESIGN: Sensitivity to potent CDK4/6 inhibitor PD-0332991 (palbociclib) was correlated to protein and genomic data in 19 primary patient-derived PDA lines to identify biomarkers of response. In vivo efficacy of PD-0332991 and combination therapies was determined in subcutaneous, intrasplenic and orthotopic tumour models derived from genome-sequenced patient specimens and genetically engineered model. Mechanistically, monotherapy and combination therapy were investigated in the context of tumour cell and extracellular matrix (ECM) signalling. Prognostic relevance of companion biomarker, RB protein, was evaluated and validated in independent PDA patient cohorts (>500 specimens). RESULTS: Subtype-specific in vivo efficacy of PD-0332991-based therapy was for the first time observed at multiple stages of PDA progression: primary tumour growth, recurrence (second-line therapy) and metastatic setting and may potentially be guided by a simple biomarker (RB protein). PD-0332991 significantly disrupted surrounding ECM organisation, leading to increased quiescence, apoptosis, improved chemosensitivity, decreased invasion, metastatic spread and PDA progression in vivo. RB protein is prevalent in primary operable and metastatic PDA and may present a promising predictive biomarker to guide this therapeutic approach. CONCLUSION: This study demonstrates the promise of CDK4 inhibition in PDA over standard therapy when applied in a molecular subtype-specific context.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Humans , Mice, Inbred BALB C , Mice, Nude , Molecular Targeted Therapy/methods , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphorylation , Piperazines/therapeutic use , Prognosis , Pyridines/therapeutic use , Retinoblastoma Protein/metabolism , Xenograft Model Antitumor Assays
10.
Cell Rep ; 21(1): 274-288, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28978480

ABSTRACT

The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time.


Subject(s)
Biosensing Techniques , Fluorescence Resonance Energy Transfer/methods , Intravital Microscopy/methods , Time-Lapse Imaging/methods , rho GTP-Binding Proteins/genetics , Animals , Antineoplastic Agents/pharmacology , Bone and Bones/cytology , Bone and Bones/metabolism , Cell Movement/drug effects , Dasatinib/pharmacology , Erlotinib Hydrochloride/pharmacology , Female , Fluorescence Resonance Energy Transfer/instrumentation , Gene Expression Regulation , Intestine, Small/metabolism , Intestine, Small/ultrastructure , Intravital Microscopy/instrumentation , Mammary Glands, Animal/blood supply , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/ultrastructure , Mammary Neoplasms, Experimental/blood supply , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/ultrastructure , Mechanotransduction, Cellular , Mice , Mice, Transgenic , Neutrophils/metabolism , Neutrophils/ultrastructure , Osteocytes/metabolism , Osteocytes/ultrastructure , Pancreatic Neoplasms/blood supply , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/ultrastructure , Time-Lapse Imaging/instrumentation , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
11.
Sci Transl Med ; 9(384)2017 04 05.
Article in English | MEDLINE | ID: mdl-28381539

ABSTRACT

The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or "priming," using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer.


Subject(s)
Disease Progression , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Albumin-Bound Paclitaxel/pharmacology , Albumin-Bound Paclitaxel/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biosensing Techniques , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Collagen/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Extracellular Matrix/metabolism , Humans , Liver/pathology , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Signal Transduction/drug effects , Treatment Outcome , rho-Associated Kinases/metabolism , src-Family Kinases/metabolism , Gemcitabine
12.
Diabetologia ; 60(4): 679-689, 2017 04.
Article in English | MEDLINE | ID: mdl-28062921

ABSTRACT

AIMS/HYPOTHESIS: Administration of anti-CD40 ligand (CD40L) antibodies has been reported to allow long-term islet allograft survival in non-human primates without the need for exogenous immunosuppression. However, the use of anti-CD40L antibodies was associated with thromboembolic complications. Targeting downstream intracellular components shared between CD40 and other TNF family co-stimulatory molecules could bypass these complications. TNF receptor associated factor 2 (TRAF2) integrates multiple TNF receptor family signalling pathways that are critical for T cell activation and may be a central node of alloimmune responses. METHODS: T cell-specific Traf2-deficient mice (Traf2TKO) were generated to define the role of TRAF2 in CD4+ T cell effector responses that mediate islet allograft rejection in vivo. In vitro allograft responses were tested using mixed lymphocyte reactions and analysis of IFN-γ and granzyme B effector molecule expression. T cell function was assessed using anti-CD3/CD28-mediated proliferation and T cell polarisation studies. RESULTS: Traf2TKO mice exhibited permanent survival of full MHC-mismatched pancreatic islet allografts without exogenous immunosuppression. Traf2TKO CD4+ T cells exhibited reduced proliferation, activation and acquisition of effector function following T cell receptor stimulation; however, both Traf2TKO CD4+ and CD8+ T cells exhibited impaired alloantigen-mediated proliferation and acquisition of effector function. In polarisation studies, Traf2TKO CD4+ T cells preferentially converted to a T helper (Th)2 phenotype, but exhibited impaired Th17 differentiation. Without TRAF2, thymocytes exhibited dysregulated TNF-mediated induction of c-Jun N-terminal kinase (JNK) and canonical NFκB pathways. Critically, targeting TRAF2 in T cells did not impair the acute phase of CD8-dependent viral immunity. These data highlight a specific requirement for a TRAF2-NFκB and TRAF2-JNK signalling cascade in T cell activation and effector function in rejecting islet allografts. CONCLUSION/INTERPRETATION: Targeting TRAF2 may be useful as a therapeutic approach for immunosuppression-free islet allograft survival that avoids the thromboembolic complications associated with the use of anti-CD40L antibodies.


Subject(s)
Immunosuppression Therapy , Islets of Langerhans Transplantation/immunology , TNF Receptor-Associated Factor 2/metabolism , Animals , Blotting, Western , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation/genetics , Cell Proliferation/physiology , Female , Flow Cytometry , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , TNF Receptor-Associated Factor 2/genetics , Transplantation, Homologous
13.
Cell Rep ; 14(1): 152-167, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26725115

ABSTRACT

E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53 or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments.


Subject(s)
Cadherins/metabolism , Green Fluorescent Proteins/metabolism , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Optical Imaging/methods , Tumor Microenvironment , Animals , Cadherins/genetics , Green Fluorescent Proteins/genetics , Mice , Mice, Transgenic , Neoplasms, Experimental/genetics , Organ Specificity , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
14.
J Exp Med ; 212(8): 1239-54, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26122662

ABSTRACT

The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic ß cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB-inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of ß cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive ß cell-intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to ß cell failure. These studies reveal that NIK contributes a central mechanism for ß cell failure in diet-induced obesity.


Subject(s)
Insulin-Secreting Cells/enzymology , Insulin-Secreting Cells/pathology , Insulin/metabolism , Obesity/enzymology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Animals , Blotting, Western , DNA Primers/genetics , Humans , Immunohistochemistry , Insulin Secretion , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/pathology , Zebrafish , NF-kappaB-Inducing Kinase
15.
Eur J Immunol ; 45(6): 1820-31, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25931426

ABSTRACT

In this study, a critical and novel role for TNF receptor (TNFR) associated factor 2 (TRAF2) is elucidated for peripheral CD8(+) T-cell and NKT-cell homeostasis. Mice deficient in TRAF2 only in their T cells (TRAF2TKO) show ∼40% reduction in effector memory and ∼50% reduction in naïve CD8(+) T-cell subsets. IL-15-dependent populations were reduced further, as TRAF2TKO mice displayed a marked ∼70% reduction in central memory CD8(+) CD44(hi) CD122(+) T cells and ∼80% decrease in NKT cells. TRAF2TKO CD8(+) CD44(hi) T cells exhibited impaired dose-dependent proliferation to exogenous IL-15. In contrast, TRAF2TKO CD8(+) T cells proliferated normally to anti-CD3 and TRAF2TKO CD8(+) CD44(hi) T cells exhibited normal proliferation to exogenous IL-2. TRAF2TKO CD8(+) T cells expressed normal levels of IL-15-associated receptors and possessed functional IL-15-mediated STAT5 phosphorylation, however TRAF2 deletion caused increased AKT activation. Loss of CD8(+) CD44(hi) CD122(+) and NKT cells was mechanistically linked to an inability to respond to IL-15. The reduced CD8(+) CD44(hi) CD122(+) T-cell and NKT-cell populations in TRAF2TKO mice were rescued in the presence of high dose IL-15 by IL-15/IL-15Rα complex administration. These studies demonstrate a critical role for TRAF2 in the maintenance of peripheral CD8(+) CD44(hi) CD122(+) T-cell and NKT-cell homeostasis by modulating sensitivity to T-cell intrinsic growth factors such as IL-15.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/physiology , Homeostasis , Interleukin-15/pharmacology , Natural Killer T-Cells/drug effects , Natural Killer T-Cells/physiology , TNF Receptor-Associated Factor 2/genetics , Animals , Cellular Microenvironment , Cytokines/pharmacology , Female , Gene Expression , Immunologic Memory , Immunophenotyping , Lymphocyte Count , Lymphopenia/genetics , Lymphopenia/immunology , Lymphopenia/metabolism , Male , Mice , Mice, Knockout , NF-kappa B/metabolism , Phenotype , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Interleukin-15/genetics , Receptors, Interleukin-15/metabolism , Signal Transduction , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/physiology , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism
16.
Am J Physiol Cell Physiol ; 307(4): C349-57, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24990649

ABSTRACT

Aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor that binds to partners to mediate responses to environmental signals. To investigate its role in the innate immune system, floxed ARNT mice were bred with lysozyme M-Cre recombinase animals to generate lysozyme M-ARNT (LAR) mice with reduced ARNT expression. Myeloid cells of LAR mice had altered mRNA expression and delayed wound healing. Interestingly, when the animals were rendered diabetic, the difference in wound healing between the LAR mice and their littermate controls was no longer present, suggesting that decreased myeloid cell ARNT function may be an important factor in impaired wound healing in diabetes. Deferoxamine (DFO) improves wound healing by increasing hypoxia-inducible factors, which require ARNT for function. DFO was not effective in wounds of LAR mice, again suggesting that myeloid cells are important for normal wound healing and for the full benefit of DFO. These findings suggest that myeloid ARNT is important for immune function and wound healing. Increasing ARNT and, more specifically, myeloid ARNT may be a therapeutic strategy to improve wound healing.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/deficiency , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Immunity, Innate , Immunocompromised Host , Myeloid Cells/metabolism , Transplantation Tolerance , Wound Healing , Aged , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Case-Control Studies , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Deferoxamine/pharmacology , Dermatitis/genetics , Dermatitis/immunology , Dermatitis/metabolism , Dermatitis/pathology , Diabetes Complications/genetics , Diabetes Complications/immunology , Diabetes Complications/metabolism , Diabetes Complications/pathology , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Female , Gene Expression Regulation , Genotype , Graft Survival , Humans , Immunity, Innate/genetics , Immunocompromised Host/genetics , Inflammation Mediators/metabolism , Integrases/genetics , Macrophage Activation , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Muramidase/genetics , Myeloid Cells/drug effects , Myeloid Cells/immunology , Phenotype , RNA, Messenger/metabolism , Skin/immunology , Skin/metabolism , Skin/pathology , Skin Transplantation
17.
J Immunol ; 193(1): 170-6, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24872190

ABSTRACT

B cells inhabit the normal human thymus, suggesting a role in T cell selection. In this study, we report that B cells can modulate thymic production of CD4+ Foxp3+ T cells (regulatory T cells [Tregs]). Mice with transgenic expression of BAFF (BAFF-Tg) harbor increased numbers of Helios+ Foxp3+ thymic Tregs and, similar to some human autoimmune conditions, also exhibit increased numbers of B cells colonizing the thymus. Distinct intrathymic B cell subpopulations were identified, namely B220+, IgM+, CD23(hi), CD21(int) cells; B220+, IgM+, CD23(lo), CD21(lo) cells; and a population of B220+, IgM+, CD23(lo), CD21(hi) cells. Anatomically, CD19+ B cells accumulated in the thymic medulla region juxtaposed to Foxp3+ T cells. These intrathymic B cells engender Tregs. Indeed, thymic Treg development was diminished in both B cell-deficient BAFF-Tg chimeras, but also B cell-deficient wild-type chimeras. B cell Ag capture and presentation are critical in vivo events for Treg development. In the absence of B cell surface MHC class II expression, thymic expansion of BAFF-Tg Tregs was lost. Further to this, expansion of Tregs did not occur in BAFF-Tg/Ig hen egg lysozyme BCR chimeras, demonstrating a requirement for Ag specificity. Thus, we present a mechanism whereby intrathymic B cells, through the provision of cognate help, contribute to the shaping of the Treg repertoire.


Subject(s)
B-Lymphocytes/immunology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Animals , Antigens/genetics , Antigens/immunology , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , B-Cell Activating Factor/genetics , B-Cell Activating Factor/immunology , B-Lymphocytes/cytology , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology
18.
Eur J Immunol ; 44(4): 983-93, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24435807

ABSTRACT

Targeting the BAFF/APRIL system has shown to be effective in preventing T-cell dependent autoimmune disease in the NOD mouse, a spontaneous model of type 1 diabetes. In this study we generated BAFF-deficient NOD mice to examine how BAFF availability would influence T-cell responses in vivo and the development of spontaneous diabetes. BAFF-deficient NOD mice which lack mature B cells, were protected from diabetes and showed delayed rejection of an allogeneic islet graft. Diabetes protection correlated with a failure to expand pathogenic IGRP-reactive CD8(+) T cells, which were maintained in the periphery at correspondingly low levels. Adoptive transfer of IGRP-reactive CD8(+) T cells with B cells into BAFF-deficient NOD mice enhanced IGRP-reactive CD8(+) T-cell expansion. Furthermore, when provoked with cyclophosphamide, or transferred to a secondary lymphopenic host, the latent pool of self-reactive T cells resident in BAFF-deficient NOD mice could elicit beta cell destruction. We conclude that lack of BAFF prevents the procurement of B-cell-dependent help necessary for the emergence of destructive diabetes. Indeed, treatment of NOD mice with the BAFF-blocking compound, BR3-Fc, resulted in a delayed onset and reduced incidence of diabetes.


Subject(s)
Autoimmunity/immunology , B-Cell Activating Factor/immunology , B-Lymphocytes/immunology , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Animals , Autoimmunity/genetics , B-Cell Activating Factor/genetics , B-Cell Activating Factor/metabolism , B-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Female , Flow Cytometry , Glucose-6-Phosphatase/immunology , Glucose-6-Phosphatase/metabolism , Graft Rejection/genetics , Graft Rejection/immunology , Graft Survival/genetics , Graft Survival/immunology , Immunophenotyping , Islets of Langerhans Transplantation/methods , Lymphocyte Activation/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , T-Lymphocytes/metabolism , Time Factors
19.
J Mol Endocrinol ; 51(2): 225-32, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23833251

ABSTRACT

Chronic hyperglycemia contributes to ß-cell dysfunction in diabetes and with islet transplantation, but the mechanisms remain unclear. Recent studies demonstrate that the unfolded protein response (UPR) is critical for ß-cell function. Here, we assessed the influence of hyperglycemia on UPR gene expression in transplanted islets. Streptozotocin-induced diabetic or control nondiabetic mice were transplanted under the kidney capsule with syngeneic islets either sufficient or not to normalize hyperglycemia. Twenty-one days after transplantation, islet grafts were excised and RT-PCR was used to assess gene expression. In islet grafts from diabetic mice, expression levels of many UPR genes of the IRE1/ATF6 pathways, which are important for adaptation to endoplasmic reticulum stress, were markedly reduced compared with that in islet grafts from control mice. UPR genes of the PERK pathway were also downregulated. The normalization of glycemia restored the changes in mRNA expression, suggesting that chronic hyperglycemia contributes to the downregulation of multiple arms of UPR gene expression. Similar correlations were observed between blood glucose and mRNA levels of transcription factors involved in the maintenance of ß-cell phenotype and genes implicated in ß-cell function, suggesting convergent regulation of UPR gene expression and ß-cell differentiation by hyperglycemia. However, the normalization of glycemia was not accompanied by restoration of antioxidant or pro-inflammatory cytokine mRNA levels, which were increased in islet grafts from diabetic mice. These studies demonstrate that chronic hyperglycemia contributes to the downregulation of multiple arms of UPR gene expression in transplanted mouse islets. Failure of the adaptive UPR may contribute to ß-cell dedifferentiation and dysfunction in diabetes.


Subject(s)
Hyperglycemia/metabolism , Islets of Langerhans Transplantation , Islets of Langerhans/metabolism , Unfolded Protein Response , Animals , Antioxidants/metabolism , Blood Glucose , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation , Hyperglycemia/genetics , Inflammation Mediators/metabolism , Insulin-Secreting Cells/metabolism , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transplants/metabolism , Unfolded Protein Response/genetics
20.
Cell Transplant ; 22(11): 2147-59, 2013.
Article in English | MEDLINE | ID: mdl-23127310

ABSTRACT

We examined whether hypoxic exposure prior to the event of transplantation would have a positive or negative effect upon later islet graft function. Mouse islets exposed to hypoxic culture were transplanted into syngeneic recipients. Islet graft function, ß-cell physiology, as well as molecular changes were examined. Expression of hypoxia-response genes in human islets pre- and posttransplant was examined by microarray. Hypoxia-preexposed murine islet grafts provided poor glycemic control in their syngeneic recipients, marked by persistent hyperglycemia and pronounced glucose intolerance with failed first- and second-phase glucose-stimulated insulin secretion in vivo. Mechanistically, hypoxic preexposure stabilized HIF-1α with a concomitant increase in hypoxic-response genes including LDHA, and a molecular gene set, which would favor glycolysis and lactate production and impair glucose sensing. Indeed, static incubation studies showed that hypoxia-exposed islets exhibited dysregulated glucose responsiveness with elevated basal insulin secretion. Isolated human islets, prior to transplantation, express a characteristic hypoxia-response gene expression signature, including high levels of LDHA, which is maintained posttransplant. Hypoxic preexposure of an islet graft drives a HIF-dependent switch to glycolysis with subsequent poor glycemic control and loss of GSIS. Early intervention to reverse or prevent these hypoxia-induced metabolic gene changes may improve clinical islet transplantation.


Subject(s)
Cell Hypoxia , Islets of Langerhans Transplantation , Islets of Langerhans/cytology , Adult , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/surgery , Female , Glycolysis , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5 , Mice , Mice, Inbred C57BL , Middle Aged , Transcriptome , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...