Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
J Chem Inf Model ; 64(4): 1158-1171, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38316125

ABSTRACT

Over the last five years, virtual screening of ultralarge synthesis on-demand libraries has emerged as a powerful tool for hit identification in drug discovery programs. As these libraries have grown to tens of billions of molecules, we have reached a point where it is no longer cost-effective to screen every molecule virtually. To address these challenges, several groups have developed heuristic search methods to rapidly identify the best molecules on a virtual screen. This article describes the application of Thompson sampling (TS), an active learning approach that streamlines the virtual screening of large combinatorial libraries by performing a probabilistic search in the reagent space, thereby never requiring the full enumeration of the library. TS is a general technique that can be applied to various virtual screening modalities, including 2D and 3D similarity search, docking, and application of machine-learning models. In an illustrative example, we show that TS can identify more than half of the top 100 molecules from a docking-based virtual screen of 335 million molecules by evaluating 1% of the data set.


Subject(s)
Databases, Chemical , Drug Discovery , Drug Discovery/methods
2.
Commun Chem ; 7(1): 22, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310120

ABSTRACT

Amines and carboxylic acids are abundant chemical feedstocks that are nearly exclusively united via the amide coupling reaction. The disproportionate use of the amide coupling leaves a large section of unexplored reaction space between amines and acids: two of the most common chemical building blocks. Herein we conduct a thorough exploration of amine-acid reaction space via systematic enumeration of reactions involving a simple amine-carboxylic acid pair. This approach to chemical space exploration investigates the coarse and fine modulation of physicochemical properties and molecular shapes. With the invention of reaction methods becoming increasingly automated and bringing conceptual reactions into reality, our map provides an entirely new axis of chemical space exploration for rational property design.

3.
Cancer Discov ; 14(2): 240-257, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37916956

ABSTRACT

PIK3CA (PI3Kα) is a lipid kinase commonly mutated in cancer, including ∼40% of hormone receptor-positive breast cancer. The most frequently observed mutants occur in the kinase and helical domains. Orthosteric PI3Kα inhibitors suffer from poor selectivity leading to undesirable side effects, most prominently hyperglycemia due to inhibition of wild-type (WT) PI3Kα. Here, we used molecular dynamics simulations and cryo-electron microscopy to identify an allosteric network that provides an explanation for how mutations favor PI3Kα activation. A DNA-encoded library screen leveraging electron microscopy-optimized constructs, differential enrichment, and an orthosteric-blocking compound led to the identification of RLY-2608, a first-in-class allosteric mutant-selective inhibitor of PI3Kα. RLY-2608 inhibited tumor growth in PIK3CA-mutant xenograft models with minimal impact on insulin, a marker of dysregulated glucose homeostasis. RLY-2608 elicited objective tumor responses in two patients diagnosed with advanced hormone receptor-positive breast cancer with kinase or helical domain PIK3CA mutations, with no observed WT PI3Kα-related toxicities. SIGNIFICANCE: Treatments for PIK3CA-mutant cancers are limited by toxicities associated with the inhibition of WT PI3Kα. Molecular dynamics, cryo-electron microscopy, and DNA-encoded libraries were used to develop RLY-2608, a first-in-class inhibitor that demonstrates mutant selectivity in patients. This marks the advance of clinical mutant-selective inhibition that overcomes limitations of orthosteric PI3Kα inhibitors. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 227 . This article is featured in Selected Articles from This Issue, p. 201.


Subject(s)
Breast Neoplasms , Hyperinsulinism , Humans , Female , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Cryoelectron Microscopy , Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/genetics , Hyperinsulinism/drug therapy , Hyperinsulinism/genetics , DNA
4.
Proteins ; 91(12): 1811-1821, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37795762

ABSTRACT

CASP15 introduced a new category, ligand prediction, where participants were provided with a protein or nucleic acid sequence, SMILES line notation, and stoichiometry for ligands and tasked with generating computational models for the three-dimensional structure of the corresponding protein-ligand complex. These models were subsequently compared with experimental structures determined by x-ray crystallography or cryoEM. To assess these predictions, two novel scores were developed. The Binding-Site Superposed, Symmetry-Corrected Pose Root Mean Square Deviation (BiSyRMSD) evaluated the absolute deviations of the models from the experimental structures. At the same time, the Local Distance Difference Test for Protein-Ligand Interactions (lDDT-PLI) assessed the ability of models to reproduce the protein-ligand interactions in the experimental structures. The ligands evaluated in this challenge range from single-atom ions to large flexible organic molecules. More than 1800 submissions were evaluated for their ability to predict 23 different protein-ligand complexes. Overall, the best models could faithfully reproduce the geometries of more than half of the prediction targets. The ligands' size and flexibility were the primary factors influencing the predictions' quality. Small ions and organic molecules with limited flexibility were predicted with high fidelity, while reproducing the binding poses of larger, flexible ligands proved more challenging.


Subject(s)
Models, Molecular , Humans , Ligands , Binding Sites , Ions , Protein Binding , Crystallography, X-Ray
5.
J Med Chem ; 66(19): 13384-13399, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37774359

ABSTRACT

Protein tyrosine phosphatase SHP2 mediates RAS-driven MAPK signaling and has emerged in recent years as a target of interest in oncology, both for treating with a single agent and in combination with a KRAS inhibitor. We were drawn to the pharmacological potential of SHP2 inhibition, especially following the initial observation that drug-like compounds could bind an allosteric site and enforce a closed, inactive state of the enzyme. Here, we describe the identification and characterization of GDC-1971 (formerly RLY-1971), a SHP2 inhibitor currently in clinical trials in combination with KRAS G12C inhibitor divarasib (GDC-6036) for the treatment of solid tumors driven by a KRAS G12C mutation.

6.
J Comput Aided Mol Des ; 36(9): 623-638, 2022 09.
Article in English | MEDLINE | ID: mdl-36114380

ABSTRACT

In May 2022, JCAMD published a Special Issue in honor of Gerald (Gerry) Maggiora, whose scientific leadership over many decades advanced the fields of computational chemistry and chemoinformatics for drug discovery. Along the way, he has impacted many researchers in both academia and the pharmaceutical industry. In this Epilogue, we explain the origins of the Festschrift and present a series of first-hand vignettes, in approximate chronological sequence, that together paint a picture of this remarkable man. Whether they highlight Gerry's endless curiosity about molecular life sciences or his willingness to challenge conventional wisdom or his generous support of junior colleagues and peers, these colleagues and collaborators are united in their appreciation of his positive influence. These tributes also reflect key trends and themes during the evolution of modern drug discovery, seen through the lens of people who worked with a visionary leader. Junior scientists will find an inspiring roadmap for creative collegiality and collaboration.


Subject(s)
Biological Science Disciplines , Mentors , History, 20th Century , Humans
7.
J Med Chem ; 65(10): 7073-7087, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35511951

ABSTRACT

One application area of computational methods in drug discovery is the automated design of small molecules. Despite the large number of publications describing methods and their application in both retrospective and prospective studies, there is a lack of agreement on terminology and key attributes to distinguish these various systems. We introduce Automated Chemical Design (ACD) Levels to clearly define the level of autonomy along the axes of ideation and decision making. To fully illustrate this framework, we provide literature exemplars and place some notable methods and applications into the levels. The ACD framework provides a common language for describing automated small molecule design systems and enables medicinal chemists to better understand and evaluate such systems.


Subject(s)
Drug Discovery , Drug Discovery/methods , Prospective Studies , Retrospective Studies
8.
Nat Rev Chem ; 6(6): 428-442, 2022 Jun.
Article in English | MEDLINE | ID: mdl-37117429

ABSTRACT

Machine learning (ML) promises to tackle the grand challenges in chemistry and speed up the generation, improvement and/or ordering of research hypotheses. Despite the overarching applicability of ML workflows, one usually finds diverse evaluation study designs. The current heterogeneity in evaluation techniques and metrics leads to difficulty in (or the impossibility of) comparing and assessing the relevance of new algorithms. Ultimately, this may delay the digitalization of chemistry at scale and confuse method developers, experimentalists, reviewers and journal editors. In this Perspective, we critically discuss a set of method development and evaluation guidelines for different types of ML-based publications, emphasizing supervised learning. We provide a diverse collection of examples from various authors and disciplines in chemistry. While taking into account varying accessibility across research groups, our recommendations focus on reporting completeness and standardizing comparisons between tools. We aim to further contribute to improved ML transparency and credibility by suggesting a checklist of retro-/prospective tests and dissecting their importance. We envisage that the wide adoption and continuous update of best practices will encourage an informed use of ML on real-world problems related to the chemical sciences.

9.
J Comput Aided Mol Des ; 36(5): 381-389, 2022 05.
Article in English | MEDLINE | ID: mdl-34549368

ABSTRACT

While machine learning models have become a mainstay in Cheminformatics, the field has yet to agree on standards for model evaluation and comparison. In many cases, authors compare methods by performing multiple folds of cross-validation and reporting the mean value for an evaluation metric such as the area under the receiver operating characteristic. These comparisons of mean values often lack statistical rigor and can lead to inaccurate conclusions. In the interest of encouraging best practices, this tutorial provides an example of how multiple methods can be compared in a statistically rigorous fashion.


Subject(s)
Machine Learning , ROC Curve
10.
Analyst ; 146(12): 4049-4065, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34047735

ABSTRACT

A numerical simulation method has been developed to describe the transfer of analytes between solid and aqueous phases and assessed for a commercially available extraction chromatography resin (UTEVA resin). The method employs an ordinary differential equation solver within the LabVIEW visual programming language. The method was initially developed to describe a closed batch system. The differential equations and kinetic rate constants determined under these conditions were then applied to the flow-through column geometry. This was achieved by modelling the resin bed as a series of discrete vertically stacked sections, thereby generating an array of solid and aqueous concentration values. Axial flow was simulated by the advancement of the aqueous phase values by one array position with the value advancing from the final array position representing the column output concentration. An investigation into the observed difference in breakthrough profiles obtained under repeated conditions revealed the relative tolerance of the numerical simulation method to errors in each input parameter. Additional physical processes such as backpressure and leaching of the extractant were considered as an explanation for observed inconsistencies between experimental and simulated datasets. An elution sequence featuring multiple eluents was also simulated, demonstrating that the prediction of analyte separation sequences is possible. The potential to develop the LabVIEW coding into user friendly software with an extendable kinetic database is also discussed. This software will be a useful tool to radiochemists particularly in the development of new analytical methods using automated separation systems.

11.
Expert Opin Drug Discov ; 16(9): 937-947, 2021 09.
Article in English | MEDLINE | ID: mdl-33870801

ABSTRACT

Introduction: Artificial Intelligence (AI) has become a component of our everyday lives, with applications ranging from recommendations on what to buy to the analysis of radiology images. Many of the techniques originally developed for other fields such as language translation and computer vision are now being applied in drug discovery. AI has enabled multiple aspects of drug discovery including the analysis of high content screening data, and the design and synthesis of new molecules.Areas covered: This perspective provides an overview of the application of AI in several areas relevant to drug discovery including property prediction, molecule generation, image analysis, and organic synthesis planning.Expert opinion: While a variety of machine learning methods are now being routinely used to predict biological activity and ADME properties, methods of representing molecules continue to evolve. Molecule generation methods are relatively new and unproven but hold the potential to access new, unexplored areas of chemical space. The application of AI in drug discovery will continue to benefit from dedicated research, as well as AI developments in other fields. With this pairing algorithmic advancements and high-quality data, the impact of AI in drug discovery will continue to grow in the coming years.


Subject(s)
Artificial Intelligence , Drug Discovery , Humans , Machine Learning
12.
Acc Chem Res ; 54(2): 263-270, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33370107

ABSTRACT

Recent advances in computer hardware and software have led to a revolution in deep neural networks that has impacted fields ranging from language translation to computer vision. Deep learning has also impacted a number of areas in drug discovery, including the analysis of cellular images and the design of novel routes for the synthesis of organic molecules. While work in these areas has been impactful, a complete review of the applications of deep learning in drug discovery would be beyond the scope of a single Account. In this Account, we will focus on two key areas where deep learning has impacted molecular design: the prediction of molecular properties and the de novo generation of suggestions for new molecules.One of the most significant advances in the development of quantitative structure-activity relationships (QSARs) has come from the application of deep learning methods to the prediction of the biological activity and physical properties of molecules in drug discovery programs. Rather than employing the expert-derived chemical features typically used to build predictive models, researchers are now using deep learning to develop novel molecular representations. These representations, coupled with the ability of deep neural networks to uncover complex, nonlinear relationships, have led to state-of-the-art performance. While deep learning has changed the way that many researchers approach QSARs, it is not a panacea. As with any other machine learning task, the design of predictive models is dependent on the quality, quantity, and relevance of available data. Seemingly fundamental issues, such as optimal methods for creating a training set, are still open questions for the field. Another critical area that is still the subject of multiple research efforts is the development of methods for assessing the confidence in a model.Deep learning has also contributed to a renaissance in the application of de novo molecule generation. Rather than relying on manually defined heuristics, deep learning methods learn to generate new molecules based on sets of existing molecules. Techniques that were originally developed for areas such as image generation and language translation have been adapted to the generation of molecules. These deep learning methods have been coupled with the predictive models described above and are being used to generate new molecules with specific predicted biological activity profiles. While these generative algorithms appear promising, there have been only a few reports on the synthesis and testing of molecules based on designs proposed by generative models. The evaluation of the diversity, quality, and ultimate value of molecules produced by generative models is still an open question. While the field has produced a number of benchmarks, it has yet to agree on how one should ultimately assess molecules "invented" by an algorithm.

13.
J Chem Inf Model ; 60(10): 4417-4420, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32937075

ABSTRACT

Many high-profile scientific journals have established policies mandating the release of code accompanying papers that describe computational methods. Unfortunately, the majority of journals that publish papers in Computational Chemistry and Cheminformatics have yet to define such guidelines. This Viewpoint reviews the current state of reproducibility for the field and makes a case for the inclusion of code with computational papers.


Subject(s)
Publishing , Reproducibility of Results
14.
J Chem Inf Model ; 60(9): 4109-4111, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32981325
15.
Br J Oral Maxillofac Surg ; 58(10): e320-e322, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32981760

ABSTRACT

COVID-19 has led to increased levels of personal protective equipment (PPE) in surgical specialties. Aneurin Bevan Healthboard Oral and Maxillofacial unit sees approximately 2,808 patients per annum and to meet current guidelines this added PPE is estimated to cost an extra £32,292. Whilst this helps improve safety for clinicians and patients, we also recommend that evidence is regularly reviewed to assess what PPE is justified at different stages of viral prevalence.


Subject(s)
COVID-19 , Health Care Costs , Orthognathic Surgery , Personal Protective Equipment , Humans , Orthognathic Surgery/economics , SARS-CoV-2 , State Medicine , Thiamine , United Kingdom
18.
Phys Rev Lett ; 124(5): 052501, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32083900

ABSTRACT

The rare phenomenon of nuclear wobbling motion has been investigated in the nucleus ^{187}Au. A longitudinal wobbling-bands pair has been identified and clearly distinguished from the associated signature-partner band on the basis of angular distribution measurements. Theoretical calculations in the framework of the particle rotor model are found to agree well with the experimental observations. This is the first experimental evidence for longitudinal wobbling bands where the expected signature partner band has also been identified, and establishes this exotic collective mode as a general phenomenon over the nuclear chart.

20.
J Comput Aided Mol Des ; 34(2): 99-119, 2020 02.
Article in English | MEDLINE | ID: mdl-31974851

ABSTRACT

The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Enzyme Inhibitors/chemistry , Humans , Ligands , Machine Learning , Molecular Docking Simulation , Small Molecule Libraries/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...