Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 33(32): 4173-84, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24213577

ABSTRACT

The Polycomb group (PcG) proteins regulate stem cell differentiation via the repression of gene transcription, and their deregulation has been widely implicated in cancer development. The PcG protein Enhancer of Zeste Homolog 2 (EZH2) works as a catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) by methylating lysine 27 on histone H3 (H3K27me3), a hallmark of PRC2-mediated gene repression. In skeletal muscle progenitors, EZH2 prevents an unscheduled differentiation by repressing muscle-specific gene expression and is downregulated during the course of differentiation. In rhabdomyosarcoma (RMS), a pediatric soft-tissue sarcoma thought to arise from myogenic precursors, EZH2 is abnormally expressed and its downregulation in vitro leads to muscle-like differentiation of RMS cells of the embryonal variant. However, the role of EZH2 in the clinically aggressive subgroup of alveolar RMS, characterized by the expression of PAX3-FOXO1 oncoprotein, remains unknown. We show here that EZH2 depletion in these cells leads to programmed cell death. Transcriptional derepression of F-box protein 32 (FBXO32) (Atrogin1/MAFbx), a gene associated with muscle homeostasis, was evidenced in PAX3-FOXO1 RMS cells silenced for EZH2. This phenomenon was associated with reduced EZH2 occupancy and H3K27me3 levels at the FBXO32 promoter. Simultaneous knockdown of FBXO32 and EZH2 in PAX3-FOXO1 RMS cells impaired the pro-apoptotic response, whereas the overexpression of FBXO32 facilitated programmed cell death in EZH2-depleted cells. Pharmacological inhibition of EZH2 by either 3-Deazaneplanocin A or a catalytic EZH2 inhibitor mirrored the phenotypic and molecular effects of EZH2 knockdown in vitro and prevented tumor growth in vivo. Collectively, these results indicate that EZH2 is a key factor in the proliferation and survival of PAX3-FOXO1 alveolar RMS cells working, at least in part, by repressing FBXO32. They also suggest that the reducing activity of EZH2 could represent a novel adjuvant strategy to eradicate high-risk PAX3-FOXO1 alveolar RMS.


Subject(s)
Forkhead Transcription Factors/metabolism , Muscle Proteins/antagonists & inhibitors , Paired Box Transcription Factors/metabolism , Polycomb Repressive Complex 2/physiology , Rhabdomyosarcoma, Alveolar/metabolism , SKP Cullin F-Box Protein Ligases/antagonists & inhibitors , Adolescent , Apoptosis , Cell Differentiation , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation , Cell Survival , Child , Enhancer of Zeste Homolog 2 Protein , Female , Forkhead Box Protein O1 , Gene Expression Regulation, Neoplastic , Gene Silencing , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/metabolism , Homeostasis , Humans , Male , Muscle Proteins/physiology , PAX3 Transcription Factor , SKP Cullin F-Box Protein Ligases/physiology
2.
Oncogene ; 33(9): 1148-57, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-23435416

ABSTRACT

Rhabdomyosarcomas (RMS) are the most frequent soft-tissue sarcoma in children and characteristically show features of developing skeletal muscle. The alveolar subtype is frequently associated with a PAX3-FOXO1 fusion protein that is known to contribute to the undifferentiated myogenic phenotype of RMS cells. Histone methylation of lysine residues controls developmental processes in both normal and malignant cell contexts. Here we show that JARID2, which encodes a protein known to recruit various complexes with histone-methylating activity to their target genes, is significantly overexpressed in RMS with PAX3-FOXO1 compared with the fusion gene-negative RMS (t-test; P < 0.0001). Multivariate analyses showed that higher JARID2 levels are also associated with metastases at diagnosis, independent of fusion gene status and RMS subtype (n = 120; P = 0.039). JARID2 levels were altered by silencing or overexpressing PAX3-FOXO1 in RMS cell lines with and without the fusion gene, respectively. Consistent with this, we demonstrated that JARID2 is a direct transcriptional target of the PAX3-FOXO1 fusion protein. Silencing JARID2 resulted in reduced cell proliferation coupled with myogenic differentiation, including increased expression of Myogenin (MYOG) and Myosin Light Chain (MYL1) in RMS cell lines representative of both the alveolar and embryonal subtypes. Induced myogenic differentiation was associated with a decrease in JARID2 levels and this phenotype could be rescued by overexpressing JARID2. Furthermore, we that showed JARID2 binds to and alters the methylation status of histone H3 lysine 27 in the promoter regions of MYOG and MYL1 and that the interaction of JARID2 at these promoters is dependent on EED, a core component of the polycomb repressive complex 2 (PRC2). Therefore, JARID2 is a downstream effector of PAX3-FOXO1 that maintains an undifferentiated myogenic phenotype that is characteristic of RMS. JARID2 and other components of PRC2 may represent novel therapeutic targets for treating RMS patients.


Subject(s)
Cell Differentiation/genetics , Muscle Development/genetics , Oncogene Proteins, Fusion/genetics , Paired Box Transcription Factors/genetics , Polycomb Repressive Complex 2/genetics , Rhabdomyosarcoma/genetics , Cell Line, Tumor , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein , Gene Expression Regulation, Neoplastic/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Myogenin/genetics , Myogenin/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Paired Box Transcription Factors/metabolism , Polycomb Repressive Complex 2/metabolism , Promoter Regions, Genetic/genetics , Promyelocytic Leukemia Protein , Rhabdomyosarcoma/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...