Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Radiat Prot Dosimetry ; 199(12): 1324-1335, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37357013

ABSTRACT

The worldwide transformation of electricity production goes hand in hand with increasing use of wind energy. The German 'Energiewende' project is no exception and relies heavily on the construction and use of an ever-increasing number of wind turbines. While the operation of wind turbines does not lead to the emission of pollutants (in contrast to, e.g. coal, oil or gas), the production processes of the construction materials do. Since the raw materials' production primarily takes place outside Germany, radioactivity and doses related to these processes occur at remote places in the world. This effect might be called an 'export of doses'. In the present paper, we perform a life cycle analysis of wind turbines, investigating the mining and production of the construction materials. We focus on rare-earth elements needed for the generator magnets and assess the associated releases of radioactive materials during mining and processing, primarily in China. Estimates of dose to the public in selected Chinese cities are calculated. Different electricity generation techniques are compared by the use of the quantity (collective) dose per GW per year.


Subject(s)
Coal , Electricity , Germany , Cities , China
2.
Radiat Prot Dosimetry ; 199(8-9): 716-724, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37225217

ABSTRACT

Digital media are becoming increasingly influential in society, especially among the younger generation. Therefore, an augmented reality (AR) app was developed that simulates experiments with radioactive sources. The app runs experiments on the range and penetration power of alpha, beta and gamma radiation. It assigns virtual radiation sources, shielding materials or a detector to printed image markers, and superimposes their 3D images on the camera image. Alpha, beta and gamma radiation are clearly distinguishable by choosing different visualizations. The detector displays the measured count rates. At school, the app can be used in different ways. A concept for a teaching unit in Grade 10 was developed and tested in several classes based on a prototype of the app. The learning progress from the AR experiments was examined. Furthermore, an evaluation of the app was carried out. The most recent version of the app can be found here: https://seafile.projekt.uni-hannover.de/d/dd033aaaf5df4ec18362/.


Subject(s)
Augmented Reality , Radioactivity , Internet , Schools , Gamma Rays
3.
J Hazard Mater ; 452: 131338, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37027912

ABSTRACT

Microscopic fuel fragments, so-called "hot particles", were released during the 1986 accident at the Chornobyl nuclear powerplant and continue to contaminate the exclusion zone in northern Ukraine. Isotopic analysis can provide vital information about sample origin, history and contamination of the environment, though it has been underutilized due to the destructive nature of most mass spectrometric techniques, and inability to remove isobaric interference. Recent developments have diversified the range of elements that can be investigated through resonance ionization mass spectrometry (RIMS), notably in the fission products. The purpose of this study is to demonstrate the application of multi-element analysis on hot particles as relates to their burnup, particle formation in the accident, and weathering. The particles were analysed with two RIMS instruments: resonant-laser secondary neutral mass spectrometry (rL-SNMS) at the Institute for Radiation Protection and Radioecology (IRS) in Hannover, Germany, and laser ionization of neutrals (LION) at Lawrence Livermore National Laboratory (LLNL) in Livermore, USA. Comparable results across instruments show a range of burnup dependent isotope ratios for U and Pu and Cs, characteristic of RBMK-type reactors. Results for Rb, Ba and Sr show the influence of the environment, retention of Cs in the particles and time passed since fuel discharge.

4.
Chemosphere ; 313: 137252, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36403807

ABSTRACT

A combination of biochemical preparation methods with microscopic, spectroscopic, and mass spectrometric analysis techniques as contemplating state of the art application, was used for direct visualization, localization, and chemical identification of europium in plants. This works illustrates the chemical journey of europium (Eu(III)) through winter rye (Secale cereale L.), providing insight into the possibilities of speciation for Rare Earth Elements (REE) and trivalent f-elements. Kinetic experiments of contaminated plants show a maximum europium concentration in Secale cereale L. after four days. Transport of the element through the vascular bundle was confirmed with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDS). For chemical speciation, plants were grown in a liquid nutrition medium, whereby Eu(III) species distribution could be measured by mass spectrometry and luminescence measurements. Both techniques confirm the occurrence of Eu malate species in the nutrition medium, and further analysis of the plant was performed. Luminescence results indicate a change in Eu(III) species distribution from root tip to plant leaves. Microscopic analysis show at least three different Eu(III) species with potential binding to organic and inorganic phosphate groups and a Eu(III) protein complex. With plant root extraction, further europium species could be identified by using Electrospray Ionization Mass Spectrometry (ESI MS). Complexation with malate, citrate, a combined malate-citrate ligand, and aspartate was confirmed mostly in a 1:1 stoichiometry (Eu:ligand). The combination of the used analytical techniques opens new possibilities in direct species analysis, especially regarding to the understanding of rare earth elements (REE) uptake in plants. This work provides a contribution in better understanding of plant mechanisms of the f-elements and their species uptake.


Subject(s)
Europium , Secale , Europium/chemistry , Malates , Ligands , Microscopy, Electron, Scanning , Spectrometry, Mass, Electrospray Ionization , Citrates
5.
Appl Radiat Isot ; 181: 110093, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34995841

ABSTRACT

Laser resonance ionization at the RISIKO 30 kV mass separator has been used to produce isotopically and isobarically pure and well quantified 222Rn emanation standards. Based upon laser-spectroscopic preparation studies, ion implantation into aluminum and tungsten targets has been carried out, providing overall implantation efficiencies of 40% up to 60%. The absolute implanted activity of 226Ra was determined by the technique of defined solid-angle α-particle spectrometry, where excellent energy resolution was observed. The 222Rn emanation coefficient of the produced targets was studied using α-particle and γ-ray spectrometry, and yielded results between 0.23 and 0.34, with relative uncertainty on the order of 1%. No dependence exceeding a 1% change of the emanation on humidity could be identified in the range of 15 %rH to 75 %rH, whereas there were hints of a slight correlation between the emanation and temperature. Additionally, and as expected, the emanation coefficient was found to be dependent on the target material as well as the implanted dose.

6.
Risk Anal ; 42(12): 2704-2719, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35092964

ABSTRACT

One of the lessons learned in various countries that have to deal with spent nuclear fuel is that finding a proper place and siting a repository for high-level nuclear waste (HLW) cannot be achieved without public consent. After decades of obstruction, Germany recently launched a new, participatory, site-selection process for the disposal of HLW in deep geological formations. Nonetheless, significant opposition is assumed. Therefore, citizens' trust in the procedure and the agents involved may be paramount. We conducted an online survey (N ≈ 5000) in March/April 2020 to test a theoretical model on trust, perceived risks and benefits, and acceptance. We differentiated acceptance as a dependent variable according to distinct phases: the procedure, a possible decision on a disposal location, and the repository facility itself. The results show that trust is mainly important for explaining acceptance of the ongoing procedure and less so for the acceptance of the decision or the repository facility itself. Moreover, our investigation of the sample using a cluster analysis reveals characteristic patterns of trust, risk perception, and acceptance by three clusters: a cluster focusing on risk perception, an ambivalent cluster, and an indifferent cluster. Trust is lowest in the risk-focused cluster and highest in the ambivalent cluster.

7.
J Hazard Mater ; 423(Pt B): 127143, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34517301

ABSTRACT

In radioecological studies, there is a significant need for understanding the plant uptake of radionuclides on a cellular level. The present work applies mass spectrometry to image the radionuclide distribution within the cellular structures of plants at varying concentrations. In a first step, plants of Daucus carota and Pisum sativum labelled with iodine and rhenium were examined, at concentrations in the range of 10 mM. Cross sections of several plant parts were imaged by secondary ion mass spectrometry (SIMS) after cryogenation in order to preserve cell structure. In a second step, the distribution of 99Tc in the two plant species was determined. For radiological reasons, a concentration three orders of magnitude lower was used, rendering measurements with SIMS impossible. Therefore, resonant laser secondary neutral mass spectrometry (rL-SNMS) was used for the first time to image 99Tc with suppression of molecular isobaric interferences. The measurement of only about 1010 atoms of 99Tc atoms is demonstrated and the distribution of 99Tc within a single epidermal cell is imaged.


Subject(s)
Rhenium , Iodides , Lasers , Radioisotopes , Spectrometry, Mass, Secondary Ion
8.
Sci Adv ; 7(44): eabj1175, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34714671

ABSTRACT

Micrometer-sized pollutant particles are of highest concern in environmental and life sciences, cosmochemistry, and forensics. From their composition, detailed information on origin and potential risks to human health or environment is obtained. We combine secondary ion mass spectrometry with resonant laser ionization to selectively examine elemental and isotopic composition of individual particles at submicrometer spatial resolution. Avoiding any chemical sample preparation, isobaric interferences are suppressed by five orders of magnitude. In contrast to most mass spectrometric techniques, only negligible mass is consumed, leaving the particle intact for further studies. Identification of actinide elements and their isotopes on a Chernobyl hot particle, including 242mAm at ultratrace levels, proved the performance. Beyond that, the technique is applicable to almost all elements and opens up previously unexplored scientific applications.

9.
J Hazard Mater ; 403: 124002, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33265035

ABSTRACT

Radioactive contamination resulting from major nuclear accidents presents harsh environmental conditions. Inside the Chernobyl exclusion zone, even more than 30 years after the accident, the resulting contamination levels still does not allow land-use or human dwellings. To study the potential of basidiomycete fungi to survive the conditions, a field trial was set up 5 km south-south-west of the destroyed reactor unit. A model basidiomycete, the lignicolous fungus Schizophyllum commune, was inoculated and survival in the soil could be verified. Indeed, one year after inoculation, the fungus was still observed using DNA-dependent techniques. Growth led to spread at a high rate, with approximately 8 mm per day. This shows that also white-rot basidiomycetes can survive the harsh conditions in soil inside the Chernobyl exclusion zone. The unadapted fungal strain showed the ability to grow and thrive in the contaminated soil where both stress from radiation and heavy metals were present.


Subject(s)
Chernobyl Nuclear Accident , Metals, Heavy , Schizophyllum , Soil
10.
Environ Sci Pollut Res Int ; 27(20): 25818-25827, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32399885

ABSTRACT

Soil contaminated with heavy metals in general and radionuclides in particular represents an escalating problem for all living organisms. Since, Chernobyl nuclear power plant accident in 1986 in Ukraine, an exclusion zone of 30 km around the former power plant is uninhabitable land due to severe contamination. Two most notable beta emitters contributing to dose hazards for decades is radioactive 137Cs/90Sr. However, large parts of the zone are also highly contaminated with uranium particles (hot particles) bearing trace amounts of highly alpha-emitting radionuclides. We established an experiment at exclusion zone with the aim to investigate the influence of two macro fungi (Schizophyllum commune (S.C.) and Leucoagaricus naucinus (L.N.)) on oxidative status and antioxidative responses in winter rye plants; from this, we wanted to test the radionuclide/heavy metals retention capacity of both fungi, and probe their further potential for mycoremediation.Result shows some differences in the concentrations of radionuclides/heavy metals and micro/macronutrients uptake in plants. As a biomarker of oxidative status, lipid peroxidation (LPO) levels and other antioxidative parameters were determined, i.e., superoxide-dismutase (SOD) isoenzymes, cysteine (CYS), and ascorbic acid (AA) concentrations as well as catalase (CAT) and glutathione reductase (GR) activities in winter rye shoots. LPO showed no significant differences between controls and plants cultivated with macro fungi. However, CAT activities were elevated in the presence of S.C/L.N compared with control, while GR activity was significantly higher only in presence of S.C. In contrast, isozyme of SOD (Cu,Zn-SOD) was the most prominent in control. Likewise, CYS content was lower in plants grown with both fungi, while AA concentration was only lower in the presence of L.N. The results showed that presence of fungi in radionuclide contaminated soil caused induction of antioxidative response in shoots of winter rye and that the response depended on the type of fungi used.


Subject(s)
Chernobyl Nuclear Accident , Secale , Antioxidants , Oxidative Stress , Ukraine
11.
Environ Sci Pollut Res Int ; 27(3): 3513-3522, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31836983

ABSTRACT

Environmental contamination by uranium (U) and other radionuclides is a serious problem worldwide, especially due to, e.g. mining activities. Ultimate accumulation of released U in aquatic systems and soils represent an escalating problem for all living organisms. In order to investigate U uptake and its toxic effects on Pisum sativum L., pea plantlets were hydroponically grown and treated with different concentrations of U. Five days after exposure to 25 and 50 µM U, P. sativum roots accumulated 2327.5 and 5559.16 mg kg-1 of U, respectively, while in shoots concentrations were 11.16 and 12.16 mg kg-1, respectively. Plants exposed to both U concentrations showed reduced biomass of shoots and reduced content of photosynthetic pigments (total chlorophyll and carotenoids) relative to control. As a biomarker of oxidative stress, lipid peroxidation (LPO) levels were determined, while antioxidative response was determined by catalase (CAT) and glutathione reductase (GR) activities as well as cysteine (Cys) and non-protein thiol (NP-SH) concentrations, both in roots and shoots. Both U treatments significantly increased LPO levels in roots and shoots, with the highest level recorded at 50 µM U, 50.38% in shoots and 59.9% in roots relative to control. U treatment reduced GR activity in shoots, while CAT activity was increased only in roots upon treatment with 25 µM U. In pea roots, cysteine content was significantly increased upon treatment with both U concentrations, for 19.8 and 25.5%, respectively, compared to control plants, while NP-SH content was not affected by the applied U. This study showed significant impact of U on biomass production and biochemical markers of phytotoxicity in P. sativum, indicating presence of oxidative stress and cellular redox imbalance in roots and shoots. Obtained tissue-specific response to U treatment showed higher sensitivity of shoots compared to roots. Much higher accumulation of U in pea roots compared to shoots implies potential role of this species in phytoremediation process.


Subject(s)
Pisum sativum , Soil Pollutants, Radioactive/metabolism , Uranium , Antioxidants , Catalase , Chlorophyll , Oxidative Stress , Plant Roots
12.
ACS Omega ; 4(11): 14420-14429, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31528795

ABSTRACT

Stainless steels can become contaminated with radionuclides at nuclear sites. Their disposal as radioactive waste would be costly. If the nature of steel contamination could be understood, effective decontamination strategies could be designed and implemented during nuclear site decommissioning in an effort to release the steels from regulatory control. Here, batch uptake experiments have been used to understand Sr and Cs (fission product radionuclides) uptake onto AISI Type 304 stainless steel under conditions representative of spent nuclear fuel storage (alkaline ponds) and PUREX nuclear fuel reprocessing (HNO3). Solution (ICP-MS) and surface measurements (GD-OES depth profiling, TOF-SIMS, and XPS) and kinetic modeling of Sr and Cs removal from solution were used to characterize their uptake onto the steel and define the chemical composition and structure of the passive layer formed on the steel surfaces. Under passivating conditions (when the steel was exposed to solutions representative of alkaline ponds and 3 and 6 M HNO3), Sr and Cs were maintained at the steel surface by sorption/selective incorporation into the Cr-rich passive film. In 12 M HNO3, corrosion and severe intergranular attack led to Sr diffusion into the passive layer and steel bulk. In HNO3, Sr and Cs accumulation was also commensurate with corrosion product (Fe and Cr) readsorption, and in the 12 M HNO3 system, XPS documented the presence of Sr and Cs chromates.

13.
Environ Sci Pollut Res Int ; 26(23): 23850-23860, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31214887

ABSTRACT

The environmental fate of iodine is of general geochemical interest as well as of substantial concern in the context of nuclear waste repositories and reprocessing plants. Soils, and in particular soil organic matter (SOM), are known to play a major role in retaining and storing iodine. Therefore, we investigated iodide and iodate sorption by four different reference soils for contact times up to 30 days. Selective sequential extractions and X-ray absorption spectroscopy (XAS) were used to characterize binding behavior to different soil components, and the oxidation state and local structure of iodine. For iodide, sorption was fast with 73 to 96% being sorbed within the first 24 h, whereas iodate sorption increased from 11-41% to 62-85% after 30 days. The organic fraction contained most of the adsorbed iodide and iodate. XAS revealed a rapid change of iodide into organically bound iodine when exposed to soil, while iodate did not change its speciation. Migration behavior of both iodine species has to be considered as iodide appears to be the less mobile species due to fast binding to SOM, but with the potential risk of mobilization when oxidized to iodate.


Subject(s)
Iodates/chemistry , Iodine/chemistry , Soil/chemistry , Adsorption , Iodides/chemistry , Oxidation-Reduction , X-Ray Absorption Spectroscopy
14.
Environ Sci Pollut Res Int ; 25(30): 29996-30008, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30187403

ABSTRACT

Radiostrontium is a common product of nuclear fission and was emitted into the environment in the course of nuclear weapon tests as well as from nuclear reactor accidents. The release of 90Sr and 89Sr into the environment can pose health threats due to their characteristics such as high specific activities and easy access in human body due to its chemical analogy to calcium. Radiostrontium enters the human food chain by the consumption of plants grown on sites comprising fission-derived radionuclides. For humans, Sr is not an essential element, but, due to solubility in water and homology with calcium, once interred in the body, it gets deposited in bones and in teeth. This concern has drawn the attention of researchers throughout the globe to develop sustainable treatment processes to remediate soil and water resources. Nowadays, phytoremediation has become a promising approach for the remediation of large extents of toxic heavy metals. Some of the plants have been reported to accumulate Sr inside their biomass but detailed mechanisms at genetic level are still to be uncovered. However, there is inadequate information offered to assess the possibility of this remediation approach. This review highlights phytoremediation approach for Sr and explains in detail the uptake mechanism inside plants.


Subject(s)
Environmental Restoration and Remediation/methods , Plants/metabolism , Strontium Radioisotopes/metabolism , Biodegradation, Environmental , Plants/chemistry , Radioactive Waste/analysis , Soil Pollutants/analysis , Soil Pollutants/metabolism , Strontium Radioisotopes/analysis
15.
Radiat Prot Dosimetry ; 178(1): 122-130, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28985380

ABSTRACT

Radon gas concentrations in eight basements, four living rooms and four caves from different locations in Kabul and Panjsher, Afghanistan, were measured by using eight active radon exposure meters recently developed by the Helmholtz Center in Munich, Germany. The two-phase measurements lasted from a week to a year. In the first phase of measurements which lasted one week, the mean activity concentrations ranged from 6 to 120 Bq/m3 and 25 to 139 Bq/m3 for the basements and caves, respectively. In the second phase of measurements which lasted one year, the mean activity concentrations ranged from 33 to 2064 Bq/m3 and the corresponding effective annual doses calculated for the inhabitants were in the range between 0.6 and 33.4 mSv. As some of the values are rather high and exceed the recommended recommendations by IAEA and ICRP, based on the local conditions a number of simple recommendations has been proposed for the possible reduction of effective annual dose caused by radon in the measurement locations.


Subject(s)
Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Radiation Dosage , Radiation Monitoring/instrumentation , Radon/analysis , Afghanistan , Caves , Housing , Humans
16.
J Hazard Mater ; 345: 114-122, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29131985

ABSTRACT

Laser Induced Breakdown Spectroscopy (LIBS) has the potential to allow direct, standoff measurement of contaminants on nuclear plant. Here, LIBS is evaluated as an analytical tool for measurement of Sr and Cs contamination on type 304 stainless steel surfaces. Samples were reacted in model acidic (PUREX reprocessing) and alkaline (spent fuel ponds) Sr and Cs bearing liquors, with LIBS multi-pulse ablation also explored to measure contaminant penetration. The Sr II (407.77nm) and Cs I (894.35nm) emission lines could be separated from the bulk emission spectra, though only Sr could be reliably detected at surface loadings >0.5mgcm-2. Depth profiling showed decay of the Sr signal with time, but importantly, elemental analysis indicated that material expelled from LIBS craters is redistributed and may interfere in later laser shot analyses.

17.
Environ Sci Pollut Res Int ; 24(28): 22741-22751, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28879634

ABSTRACT

Due to excessive mining and use of radionuclide especially uranium (U) and its fission products, numerous health hazards as well as environmental contamination worldwide have been created. The present study focused on demonstrating whether low concentration of U treatment in liquid nutient medium may translocate traces of U in plants and in fruits of Pisum sativum after 30 and 60 days of exposure for the safe use as a food supplement for human/animals. Hydroponically grown plants (in amended Hoagland medium) were treated with two different concentrations of uranium ([U] = 100 and 500 nM, respectively). Plants showed a decrease in total chlorophyll after 60 days of treatment. On the other hand, Eh of the nutrient medium was not affected from the initial days till 60 days of treatment, but pH of nutrient medium was increased upon durations, highest at 60 days of treatment. In seeds, micro/macro elements were under limit as well as U concentration was also under detection limit. We did not observe any U in the above ground parts (shoots/seeds) of the plant, i.e., under detection limit. Our observation suggests that P. sativum plants may be useful to grow at low radionuclide [U]-contaminated areas for safe human/animal use, but for other fission products, we have to investigate further for the safe human/animal use.


Subject(s)
Mining , Pisum sativum/radiation effects , Soil Pollutants, Radioactive/analysis , Uranium/analysis , Biodegradation, Environmental , Chlorophyll/analysis , Models, Theoretical , Pisum sativum/chemistry , Plant Shoots/chemistry , Plant Shoots/radiation effects , Radioisotopes/analysis , Seeds/chemistry , Seeds/radiation effects , Soil Pollutants, Radioactive/toxicity , Uranium/toxicity
18.
J Environ Radioact ; 178-179: 186-192, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28865328

ABSTRACT

Bioavailability and plant uptake of radionuclides depend on various factors. Transfer into different plant parts depends on chemical and physical processes, which need to be known for realistic ingestion dose modelling when these plants are used for food. Within the scope of the present work, the plutonium uptake by potato plants (Solanum tuberosum L.) was investigated in hydroponic solution of low concentration [Pu] = 10-9 mol L-1. Particular attention was paid to the speciation of radionuclides in the solution which was modelled by the speciation code PHREEQC. The speciation, the solubility and therefore the plant availability of radionuclides mainly depend on the pH value and the redox potential of the solution. During the contamination period, the redox potential did not change significantly. In contrast, the pH value showed characteristic changes depending on exudates excreted by the plants. Plant roots took up high amounts of plutonium (37%-50% of the added total amount). In addition to the uptake into the roots, the radionuclides can also adsorb to the exterior root surface. The solution-to-plant transfer factor showed values between 0.03 and 0.80 (Bq kg-1/ Bq L-1) for the potato tubers. By addition of the complexing agent EDTA (10-4 mol L-1), the plutonium uptake from solution increased by 58% in tubers and by 155% in shoots/leaves. The results showed that excreted substances by plants affect bioavailability of radionuclides at low concentration, on the one hand. On the other hand, the uptake of plutonium by roots and the accumulation in different plant parts can lead to non-negligible ingestion doses, even at low concentration. We are aware of the limited transferability of data obtained in hydroponic solutions to plants growing in soil. However, the aim of this study is twofold: First we want to investigate the influence of Pu speciation on plant uptake in a rather well defined system which can be modelled using available thermodynamic data. Second, techniques developed here shall be applied to the investigation of plants growing in soil in the future. The present work contributes to the basic understanding how plant induced effects on nutrient solution influence bioavailability of radionuclides and fosters the need for more detailed investigations of the complex uptake and accumulation processes of radionuclides into plants.


Subject(s)
Edetic Acid/metabolism , Plutonium/metabolism , Soil Pollutants, Radioactive/metabolism , Solanum tuberosum/metabolism
19.
Environ Sci Pollut Res Int ; 24(24): 19480-19493, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28770504

ABSTRACT

Mushrooms are well known as important food items. The uses of mushrooms in the cuisine are manifolds and are being utilized for thousands of years in both Oriental and Occidental cultures. Medicinal properties of mushrooms show an immense potential as drugs for the treatment of various diseases as they are rich in a great variety of phytochemicals. In this review, we attempted to encompass the recent knowledge and scientific advancement about mushrooms and their utilization as food or curative properties, along with their natural ability to accumulate (heavy) metals/radionuclides, which leads to an important aspect of bioremediation. However, accumulation of heavy metals and radionuclides from natural or anthropogenic sources also involves potential nutritional hazards upon consumption. These hazards have been pointed out in this review incorporating a selection of the most recently published literature.


Subject(s)
Agaricales , Food , Metals, Heavy/analysis , Nutritive Value , Radioisotopes/analysis , Agaricales/chemistry , Agaricales/metabolism , Biodegradation, Environmental , Humans
20.
Chemosphere ; 184: 438-451, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28618276

ABSTRACT

Explosive materials are energetic substances, when released into the environment, contaminate by posing toxic hazards to environment and biota. Throughout the world, soils are contaminated by such contaminants either due to manufacturing operations, military activities, conflicts of different levels, open burning/open detonation (OB/OD), dumping of munitions etc. Among different forms of chemical explosives, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX) are most common. These explosives are highly toxic as USEPA has recommended restrictions for lifetime contact through drinking water. Although, there are several utilitarian aspects in anthropogenic activities, however, effective remediation of explosives is very important. This review article emphasizes the details of appropriate practices to ameliorate the contamination. Critical evaluation has also been made to encompass the recent knowledge and advancement about bioremediation and phytoremediation of explosives (especially TNT, RDX and HMX) along with the molecular mechanisms of biodegradation.


Subject(s)
Biodegradation, Environmental , Explosive Agents/chemistry , Azocines/chemistry , Soil Pollutants , Triazines/chemistry , Trinitrotoluene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...