Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 59: 183-200, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23831544

ABSTRACT

In Canada, perfluoroalkyl acids (PFAAs) have been the focus of several monitoring programs and research and surveillance studies. Here, we integrate recent data and perform a multi-media assessment to examine the current status and ongoing trends of PFAAs in Canada. Concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and other long-chain perfluorocarboxylates (PFCAs) in air, water, sediment, fish, and birds across Canada are generally related to urbanization, with elevated concentrations observed around cities, especially in southern Ontario. PFOS levels in water, fish tissue, and bird eggs were below their respective Draft Federal Environmental Quality Guidelines, suggesting there is low potential for adverse effects to the environment/organisms examined. However, PFOS in fish and bird eggs tended to exceed guidelines for the protection of mammalian and avian consumers, suggesting a potential risk to their wildlife predators, although wildlife population health assessments are needed to determine whether negative impacts are actually occurring. Long-term temporal trends of PFOS in suspended sediment, sediment cores, Lake Trout (Salvelinus namaycush), and Herring Gull (Larus argentatus) eggs collected from Lake Ontario increased consistently from the start of data collection until the 1990s. However, after this time, the trends varied by media, with concentrations stabilizing in Lake Trout and Herring Gull eggs, and decreasing and increasing in suspended sediment and the sediment cores, respectively. For PFCAs, concentrations in suspended sediment, sediment cores, and Herring Gulls generally increased from the start of data collection until present and concentrations in Lake Trout increased until the late 1990s and subsequently stabilized. A multimedia comparison of PFAA profiles provided evidence that unexpected patterns in biota of some of the lakes were due to unique source patterns rather than internal lake processes. High concentrations of PFAAs in the leachate and air of landfill sites, in the wastewater influent/effluent, biosolids, and air at wastewater treatment plants, and in indoor air and dust highlight the waste sector and current-use products (used primarily indoors) as ongoing sources of PFAAs to the Canadian environment. The results of this study demonstrate the utility of integrating data from different media. Simultaneous evaluation of spatial and temporal trends in multiple media allows inferences that would be impossible with data on only one medium. As such, more co-ordination among monitoring sites for different media is suggested for future sampling, especially at the northern sites. We emphasize the importance of continued monitoring of multiple-media for determining future responses of environmental PFAA concentrations to voluntary and regulatory actions.


Subject(s)
Alkanesulfonic Acids/analysis , Caprylates/analysis , Environmental Monitoring , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Animals , Birds , Eggs/analysis , Fishes , Lakes/chemistry , Ontario , Waste Disposal Facilities
2.
Chemosphere ; 91(6): 778-83, 2013 May.
Article in English | MEDLINE | ID: mdl-23478126

ABSTRACT

Suspended sediments from the Detroit River were collected using sediment traps at sites ranging from western Lake Erie to southern Lake St. Clair to assess spatial distributions and temporal trends of polybrominated diphenyl ethers (PBDEs). The distribution of PBDEs in suspended sediments in the Detroit River appeared influenced by shoreline-based contemporary urban and industrial activities, which stood in contrast to PCBs that were associated with areas of historic industrial activity. Temporal trend data indicate that total PBDE concentrations decreased in the period after 2000 in response to cessation of production of the penta- and octa BDE formulations. Concentrations of total PBDEs ranged from roughly 7 ng g(-1) (4 ng g(-1) BDE 209) in southern Lake St. Clair to several hundred ng g(-1) (60-180 ng g(-1) BDE 209) in the lower reaches of the Detroit River. The widespread occurrence of PBDEs in Detroit River suspended sediments suggests that large urban areas can act as diffuse sources of these chemicals that are used in modern industrial applications and consumer products.


Subject(s)
Geologic Sediments/chemistry , Halogenated Diphenyl Ethers/analysis , Rivers/chemistry , Spatio-Temporal Analysis , Water Pollutants, Chemical/analysis
3.
Environ Toxicol Chem ; 30(7): 1564-75, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21523816

ABSTRACT

A nationwide study was conducted to examine concentrations of polybrominated diphenyl ethers (PBDEs) in top predatory fish, with a focus on lake trout (Salvelinus namaycush), across Canada, and to explore possible influences of food web processes. Concentrations of the three most abundant PBDE homolog groups (tetra-, penta-, and hexa-PBDEs) were, for the most part, higher in Great Lakes and Lake Champlain fish compared with fish from other systems. The Canadian Federal Environmental Quality Guideline for the penta-homolog was exceeded in 70% of the fish examined. However, virtually no guideline exceedances were found for other congeners. In general, PBDE-47 (a representative lower brominated congener) was significantly and positively correlated with fish length, weight, age, lipid content, and stable isotopes of nitrogen and carbon. Significant differences in the slopes of the PBDE-47/covariate relationships between sites prevented concentrations from being adjusted using an analysis of covariance (ANCOVA). However, plots showed that elevated concentrations of PBDE-47 in Great Lakes and Lake Champlain fish remained after accounting for the influence of covariates. In contrast, for PBDE-183 (a representative higher brominated congener), the relationships between fish concentrations and covariates were not consistent, which could be a result of biotransformation being more important in controlling its bioaccumulation. The data from the current study show an overall disconnect between fish PBDE concentrations and likely loadings, which may be caused by differences in food web processes between systems. Continued long-term fish contaminant monitoring is needed to evaluate potential risk to fish and their consumers. However, we also recommend sediment sampling and focused food web studies to provide information on PBDE inputs to the systems and mechanisms of biomagnification, respectively.


Subject(s)
Halogenated Diphenyl Ethers/metabolism , Trout/metabolism , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/statistics & numerical data , Analysis of Variance , Animals , Biotransformation , Canada , Environmental Monitoring , Food Chain , Fresh Water/chemistry , Halogenated Diphenyl Ethers/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...