Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 13(16)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785076

ABSTRACT

Fully dense spark plasma sintered recycled and fresh HDDR Nd-Fe-B nanocrystalline bulk magnets were processed by surface grain boundary diffusion (GBD) treatment to further augment the coercivity and investigate the underlying diffusion mechanism. The fully dense SPS processed HDDR based magnets were placed in a crucible with varying the eutectic alloys Pr68Cu32 and Dy70Cu30 at 2-20 wt. % as direct diffusion source above the ternary transition temperature for GBD processing followed by secondary annealing. The changes in mass gain was analyzed and weighted against the magnetic properties. For the recycled magnet, the coercivity (HCi) values obtained after optimal GBDP yielded ~60% higher than the starting recycled HDDR powder and 17.5% higher than the SPS-ed processed magnets. The fresh MF-15P HDDR Nd-Fe-B based magnets gained 25-36% higher coercivities with Pr-Cu GBDP. The FEG-SEM investigation provided insight on the diffusion depth and EDXS analysis indicated the changes in matrix and intergranular phase composition within the diffusion zone. The mechanism of surface to grain boundary diffusion and the limitations to thorough grain boundary diffusion in the HDDR Nd-Fe-B based bulk magnets were detailed in this study.

2.
Nature ; 578(7794): E20, 2020 02.
Article in English | MEDLINE | ID: mdl-31959987

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 575(7781): 75-86, 2019 11.
Article in English | MEDLINE | ID: mdl-31695206

ABSTRACT

Rapid growth in the market for electric vehicles is imperative, to meet global targets for reducing greenhouse gas emissions, to improve air quality in urban centres and to meet the needs of consumers, with whom electric vehicles are increasingly popular. However, growing numbers of electric vehicles present a serious waste-management challenge for recyclers at end-of-life. Nevertheless, spent batteries may also present an opportunity as manufacturers require access to strategic elements and critical materials for key components in electric-vehicle manufacture: recycled lithium-ion batteries from electric vehicles could provide a valuable secondary source of materials. Here we outline and evaluate the current range of approaches to electric-vehicle lithium-ion battery recycling and re-use, and highlight areas for future progress.

4.
Materials (Basel) ; 12(9)2019 May 08.
Article in English | MEDLINE | ID: mdl-31071992

ABSTRACT

The magnetic properties of the recycled hydrogenation disproportionation desorption recombination (HDDR) Nd-Fe-B powder, doped with a low weight fraction of DyF3 nanoparticles, were investigated. Spark plasma sintering (SPS) was used to consolidate the recycled Nd-Fe-B powder blends containing 1, 2, and 5 wt.% of DyF3 grounded powder. Different post-SPS sintering thermal treatment conditions (600, 750, and 900 °C), for a varying amount of time, were studied in view of optimizing the magnetic properties and developing characteristic core-shell microstructure in the HDDR powder. As received, recycled HDDR powder has coercivity (HCi) of 830 kA/m, and as optimally as SPS magnets reach 1160 kA/m, after the thermal treatment. With only 1-2 wt.% blended DyF3, the HCi peaked to 1407 kA/m with the thermal treatment at 750 °C for 1 h. The obtained HCi values of the blend magnet is ~69.5% higher than the starting recycled HDDR powder and 17.5% higher than the SPS processed magnet annealed at 750 °C for 1 h. Prolonging the thermal treatment time to 6 h and temperature conditions above 900 °C was detrimental to the magnetic properties. About ~2 wt.% DyF3 dopant was suitable to develop a uniform core-shell microstructure in the HDDR Nd-Fe-B powder. The Nd-rich phase in the HDDR powder has a slightly different and fluorine rich composition i.e., Nd-O-F2 than in the one reported in sintered magnets (Nd-O-F). The composition of reaction zone-phases after the thermal treatment and Dy diffusion was DyF4, which is more abundant in 5 wt.% doped samples. Further doping above 2 wt.% DyF3 is ineffective in augmenting the coercivity of the recycled HDDR powder, due to the decomposition of the shell structure and formation of non-ferromagnetic rare earth-based complex intermetallic compounds. The DyF3 doping is a very effective single step route in a controlled coercivity improvement of the recycled HDDR Nd-Fe-B powder from the end of life magnetic products.

5.
Sci Rep ; 7(1): 11134, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894237

ABSTRACT

ABSTARCT: In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd30.0Fe61.8Co5.8Ga0.6Al0.1B0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m-1) and matched remanence (1.16 T) giving a BHmax of 230 kJ m-3.

6.
Environ Sci Technol ; 48(7): 3951-8, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24576005

ABSTRACT

Neodymium is one of the more critical rare earth elements with respect to current availability and is most often used in high performance magnets. In this paper, we compare the virgin production route of these magnets with two hypothetical recycling processes in terms of environmental impact. The first recycling process looks at manual dismantling of computer hard disk drives (HDDs) combined with a novel hydrogen based recycling process. The second process assumes HDDs are shredded. Our life cycle assessment is based both on up to date literature and on our own experimental data. Because the production process of neodymium oxide is generic to all rare earths, we also report the life cycle inventory data for the production of rare earth oxides separately. We conclude that recycling of neodymium, especially via manual dismantling, is preferable to primary production, with some environmental indicators showing an order of magnitude improvement. The choice of recycling technology is also important with respect to resource recovery. While manual disassembly allows in principle for all magnetic material to be recovered, shredding leads to very low recovery rates (<10%).


Subject(s)
Magnets , Metals, Rare Earth/analysis , Boron/chemistry , Iron/chemistry , Neodymium/chemistry , Oxides/chemistry , Recycling
8.
Faraday Discuss ; 151: 75-94; discussion 95-115, 2011.
Article in English | MEDLINE | ID: mdl-22455064

ABSTRACT

Porous materials adsorb H2 through physisorption, a process which typically has a rather low enthalpy of adsorption (e.g. ca. 4 to 7 kJ mol(-1) for MOFs), thus requiring cryogenic temperatures for hydrogen storage. In this paper, we consider some of the issues associated with the accurate characterisation of the hydrogen adsorption properties of microporous materials. We present comparative gravimetric hydrogen sorption data over a range of temperatures for different microporous materials including an activated carbon, a zeolite, two MOFs and a microporous organic polymer. Hydrogen adsorption isotherms were used to calculate the enthalpy of adsorption as a function of hydrogen uptake, and to monitor the temperature dependence of the uptake of hydrogen. Under the conditions investigated, it was found that the Tóth equation provided better fits to the absolute isotherms compared to the Sips (Langmuir-Freundlich) equation at low pressures, whereas it appeared to overestimate the maximum saturation capacity. The isosteric enthalpy of adsorption was calculated by either: fitting the Sips and Tóth equations to the adsorption isotherms and then applying the Clausius-Clapeyron equation; or by using a multiparameter Virial-type adsorption isotherm equation. It was found that the calculated enthalpy of adsorption depended strongly upon the method employed and the temperature and pressure range used. It is shown that a usable capacity can be calculated from the variable temperature isotherms for all materials by defining a working pressure range (e.g. 2 to 15 bar) over which the material will be used.

9.
Angew Chem Int Ed Engl ; 48(18): 3273-7, 2009.
Article in English | MEDLINE | ID: mdl-19343755

ABSTRACT

Quick on the uptake: Following its identification during a targeted search, the intriguing crystal structure of 3,3',4,4'-tetra(trimethylsilylethynyl)biphenyl was investigated. Simple removal of the included solvent provides an organic crystal with an open microporous structure that has a striking similarity to that of zeolite A (see picture). Reversible adsorption of nitrogen and hydrogen gases at 77 K confirms that the microporosity is permanent.

10.
Phys Chem Chem Phys ; 9(15): 1802-8, 2007 Apr 21.
Article in English | MEDLINE | ID: mdl-17415491

ABSTRACT

The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption.


Subject(s)
Electric Power Supplies , Electrochemistry/instrumentation , Electrochemistry/methods , Hydrogen/chemistry , Organic Chemicals/chemistry , Polymers/chemistry , Absorption , Energy Transfer , Feasibility Studies
11.
Chem Commun (Camb) ; (1): 67-9, 2007 Jan 07.
Article in English | MEDLINE | ID: mdl-17279263

ABSTRACT

A novel triptycene-based polymer of intrinsic microporosity (Trip-PIM) displays enhanced surface area (1065 m2 g(-1)) and reversibly adsorbs 1.65% hydrogen by mass at 1 bar/77 K and 2.71% at 10 bar/77 K.

12.
J Am Chem Soc ; 129(6): 1594-601, 2007 Feb 14.
Article in English | MEDLINE | ID: mdl-17243680

ABSTRACT

We demonstrate, through structural refinement from synchrotron X-ray diffraction data, that the mechanism of the transformation between lithium amide and lithium imide during hydrogen cycling in the important Li-N-H hydrogen storage system is a bulk reversible reaction that occurs in a non-stoichiometric manner within the cubic anti-fluorite-like Li-N-H structure.

14.
Chem Commun (Camb) ; (22): 2823-5, 2005 Jun 14.
Article in English | MEDLINE | ID: mdl-15928770

ABSTRACT

We report the discovery of a new, chemical route for 'activating' the hydrogen store MgH2, that results in highly effective hydrogen uptake/release characteristics, comparable to those obtained from mechanically-milled material.

SELECTION OF CITATIONS
SEARCH DETAIL
...