Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-39018033

ABSTRACT

To combat water scarcity in remote areas around the world, adsorption-based atmospheric water harvesting (AWH) has been proposed as a technology that can be used alongside existing water production capabilities. However, commonly used adsorbents either have low water adsorption loadings or are difficult to regenerate. In this work, we developed two novel hierarchical silica-salt composites that both exhibit high water adsorption loadings under dry and humid conditions. The total water vapor loading, kinetics, and heats of water adsorption for both silica-salt composites were investigated. As hierarchical silicas have tunable pores and large pore volumes, these materials serve as effective host matrixes for the hygroscopic salt LiCl. Our results suggest that hierarchical pores play a significant role in water adsorption: micropores and some smaller mesopores act as "storage" sites for hygroscopic salt, whereas larger mesopores and macropores increase the accessibility of water vapor into the silica. Using this mix of pores, we achieved greater than 0.4 g H2O/g composite at 10% RH and 27 °C. Additionally, we found that the salt-impregnated silica and bare silica had the same heat of adsorption: 80-90 kJ/mol. The results suggest that the H-bond interactions are similar for both systems and that the primary mechanism at play here is water cluster adsorption/desorption. Despite the similar energies, the LiCl-containing materials exhibited considerably slower kinetics than bare silica materials. Of equal importance to the adsorption capacity and kinetics of these composites is their mechanical stability. To assess their mechanical stability, high-energy ball milling of silica was conducted to create more uniform particle sizes. However, reduced particle sizes came at a cost─the BET surface areas and pore volumes were drastically decreased after more than 1 h of ball milling. Findings from this study suggest that short-term ball milling may be a viable large-scale option to reduce particle size in silica materials without sacrificing significant performance.

2.
J Am Chem Soc ; 145(13): 7323-7330, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36961883

ABSTRACT

Encapsulating biomacromolecules within metal-organic frameworks (MOFs) can confer thermostability to entrapped guests. It has been hypothesized that the confinement of guest molecules within a rigid MOF scaffold results in heightened stability of the guests, but no direct evidence of this mechanism has been shown. Here, we present a novel analytical method using small-angle X-ray scattering (SAXS) to solve the structure of bovine serum albumin (BSA) while encapsulated within two zeolitic imidazolate frameworks (ZIF-67 and ZIF-8). Our approach comprises subtracting the scaled SAXS spectrum of the ZIF from that of the biocomposite BSA@ZIF to determine the radius of gyration of encapsulated BSA through Guinier, Kratky, and pair distance distribution function analyses. While native BSA exposed to 70 °C became denatured, in situ SAXS analysis showed that encapsulated BSA retained its size and folded state at 70 °C when encapsulated within a ZIF scaffold, suggesting that entrapment within MOF cavities inhibited protein unfolding and thus denaturation. This method of SAXS analysis not only provides insight into biomolecular stabilization in MOFs but may also offer a new approach to study the structure of other conformationally labile molecules in rigid matrices.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Temperature , Scattering, Small Angle , X-Ray Diffraction , Serum Albumin, Bovine
3.
Chem Commun (Camb) ; 58(88): 12305-12308, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36250295

ABSTRACT

The separation of xylene isomers still remains an industrially challenging task. Here, porous purine-based metal-organic frameworks (MOFs) have been synthesized and studied for their potential in xylene separations. In particular, Zn(purine)I showed excellent para-xylene/ortho-xylene separation capability with a diffusion selectivity of 6 and high equilibrium adsorption selectivity as indicated by coadsorption experiments. This high selectivity is attributed to the shape and size of the channel aperture within the rigid framework of Zn(purine)I.


Subject(s)
Metal-Organic Frameworks , Xylenes , Adsorption , Isomerism , Purines
4.
Struct Dyn ; 7(3): 034305, 2020 May.
Article in English | MEDLINE | ID: mdl-32637460

ABSTRACT

Understanding guest exchange processes in metal-organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffraction techniques. The complex mechanism of dehydration, along with the as-yet unreported metastable structures, was determined. The structural information obtained by the application of these techniques helps to elucidate the important guest-host interactions involved in shaping the structural landscape of the framework lattice and to highlight the importance of utilizing this technique in the characterization of functional framework materials.

5.
Molecules ; 25(11)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32516980

ABSTRACT

Photochromic compounds have a lengthy history of study and a profusion of applications that stand to gain from these studies. Among the classes of photochromic compounds, diarylethenes show desirable properties including high fatigue resistance and thermal stability, thus meeting some of the most important criteria necessary to enter the realm of practical applications. Recently, photochromic diarylethenes containing quinone functionalities have demonstrated interesting optical and solid-state properties. When properly interfaced with suitable electron withdrawing groups on the aryl component, both the ring-opening and ring-closing reactions can be achieved with visible light; this is in contrast to most other diarylethenes where UV light is required for ring closure. Unfortunately, quantitative conversion from open to closed forms is not possible. In this work, we examine the relative energies of conformations of solid-state structures observed by X-ray crystallography and evaluate their thermal stabilities based on density functional theory (DFT) calculations. Time-dependent DFT (TD-DFT) is used to model the UV-vis absorption spectra of these quinone diarylethenes. We show that spectral overlap between open and closed forms is a major hindrance to full photoconversion.


Subject(s)
Computational Chemistry , Crystallography, X-Ray , Ethylenes/chemistry , Naphthoquinones/chemistry , Light , Molecular Conformation , Molecular Structure , Photochemical Processes , Ultraviolet Rays
6.
Nat Chem ; 12(2): 186-192, 2020 02.
Article in English | MEDLINE | ID: mdl-31792386

ABSTRACT

Competitive water adsorption can have a significant impact on metal-organic framework performance properties, ranging from occupying active sites in catalytic reactions to co-adsorbing at the most favourable adsorption sites in gas separation and storage applications. In this study, we investigate, for a metal-organic framework that is stable after moisture exposure, what are the reversible, loading-dependent structural changes that occur during water adsorption. Herein, a combination of in situ synchrotron powder and single-crystal diffraction, infrared spectroscopy and molecular modelling analysis was used to understand the important role of loading-dependent water effects in a water stable metal-organic framework. Through this analysis, insights into changes in crystallographic lattice parameters, water siting information and water-induced defect structure as a response to water loading were obtained. This work shows that, even in stable metal-organic frameworks that maintain their porosity and crystallinity after moisture exposure, important molecular-level structural changes can still occur during water adsorption due to guest-host interactions such as water-induced bond rearrangements.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 4): 669-674, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28762977

ABSTRACT

Understanding the processes by which porous solid-state materials adsorb and release guest molecules would represent a significant step towards developing rational design principles for functional porous materials. To elucidate the process of liquid exchange in these materials, dynamic in situ X-ray diffraction techniques have been developed which utilize liquid-phase chemical stimuli. Using these time-resolved diffraction techniques, the ethanol solvation process in a flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]·2H2O was examined. The measurements provide important insight into the nature of the chemical transformation in this system including the presence of a previously unreported neat ethanol solvate structure.

8.
J Phys Chem A ; 119(5): 884-8, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25575177

ABSTRACT

Organic photochromic molecules including diarylethenes are of particular interest for their numerous potential applications including high-density optical data storage and light-activated switches. In this report, we examined the temperature dependence of the light-drive photocyclization reaction in a classic diarylethene. The steady-state populations were monitored spectroscopically and by temperature dependent in situ photocrystallography, the latter being the first reported example of this technique. The observed decrease in the steady-state population with decreasing temperature suggests this classic diarylethene possesses an excited-state potential energy surface topology similar to previously reported "inverted" diarylethenes.

9.
Chem Commun (Camb) ; 50(20): 2653-6, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-24473578

ABSTRACT

The synthesis and characterization of novel photochromic diarylethene-based linkers for use in metal­organic frameworks is described including crystal structure analysis of nearly all reaction intermediates. The bis-carboxylated dithien-3-ylphenanthrenes can be prepared under relatively mild conditions in high yield and were subsequently used to create a photoresponsive metal­organic framework, UBMOF-1. While the photochromism of the ligand TPDC in solution is fully reversible, the cycloreversion reaction is suppressed when this linker is incorporated into the crystalline framework of UBMOF-1.


Subject(s)
Ethylenes/chemistry , Light , Organometallic Compounds/chemistry , Crystallography, X-Ray , Molecular Structure , Organometallic Compounds/chemical synthesis , Porosity
10.
Chem Commun (Camb) ; 49(73): 8012-4, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-23903589

ABSTRACT

Herein we report the synthesis and characterization of light responsive metal organic framework (MOF) single crystals containing the photochromic diarylethene 1,2-bis(2,5-dimethyl-thien-3-yl)perfluorocyclopentene. Polarized light microscopy on single crystals indicates that the photochrome is preferentially aligned along the c-axis of the host.

SELECTION OF CITATIONS
SEARCH DETAIL
...