Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Oncotarget ; 7(3): 2329-42, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26295308

ABSTRACT

CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220 nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition.


Subject(s)
4-Aminopyridine/analogs & derivatives , Carcinoma, Non-Small-Cell Lung/drug therapy , Checkpoint Kinase 1/drug effects , Lung Neoplasms/drug therapy , Lymphoma, B-Cell/drug therapy , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Pyrazines/pharmacology , Xenograft Model Antitumor Assays , 4-Aminopyridine/pharmacokinetics , 4-Aminopyridine/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , CDC2 Protein Kinase , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , DNA Damage/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Drug Synergism , HT29 Cells , Humans , Irinotecan , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Pyrazines/pharmacokinetics , Gemcitabine
2.
Clin Cancer Res ; 18(20): 5650-61, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22929806

ABSTRACT

PURPOSE: Many tumors exhibit defective cell-cycle checkpoint control and increased replicative stress. CHK1 is critically involved in the DNA damage response and maintenance of replication fork stability. We have therefore discovered a novel potent, highly selective, orally active ATP-competitive CHK1 inhibitor, CCT244747, and present its preclinical pharmacology and therapeutic activity. EXPERIMENTAL DESIGN: Cellular CHK1 activity was assessed using an ELISA assay, and cytotoxicity a SRB assay. Biomarker modulation was measured using immunoblotting, and cell-cycle effects by flow cytometry analysis. Single-agent oral CCT244747 antitumor activity was evaluated in a MYCN-driven transgenic mouse model of neuroblastoma by MRI and in genotoxic combinations in human tumor xenografts by growth delay. RESULTS: CCT244747 inhibited cellular CHK1 activity (IC(50) 29-170 nmol/L), significantly enhanced the cytotoxicity of several anticancer drugs, and abrogated drug-induced S and G(2) arrest in multiple tumor cell lines. Biomarkers of CHK1 (pS296 CHK1) activity and cell-cycle inactivity (pY15 CDK1) were induced by genotoxics and inhibited by CCT244747 both in vitro and in vivo, producing enhanced DNA damage and apoptosis. Active tumor concentrations of CCT244747 were obtained following oral administration. The antitumor activity of both gemcitabine and irinotecan were significantly enhanced by CCT244747 in several human tumor xenografts, giving concomitant biomarker modulation indicative of CHK1 inhibition. CCT244747 also showed marked antitumor activity as a single agent in a MYCN-driven neuroblastoma. CONCLUSION: CCT244747 represents the first structural disclosure of a highly selective, orally active CHK1 inhibitor and warrants further evaluation alone or combined with genotoxic anticancer therapies.


Subject(s)
Aminopyridines/administration & dosage , Neoplasms, Experimental , Neuroblastoma , Protein Kinases , Pyrimidines/administration & dosage , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Cycle Checkpoints/drug effects , Checkpoint Kinase 1 , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Transgenic , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinases/genetics , Protein Kinases/metabolism
3.
Clin Cancer Res ; 18(14): 3912-23, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22781553

ABSTRACT

PURPOSE: Deregulated phosphatidylinositol 3-kinase pathway signaling through AGC kinases including AKT, p70S6 kinase, PKA, SGK and Rho kinase is a key driver of multiple cancers. The simultaneous inhibition of multiple AGC kinases may increase antitumor activity and minimize clinical resistance compared with a single pathway component. EXPERIMENTAL DESIGN: We investigated the detailed pharmacology and antitumor activity of the novel clinical drug candidate AT13148, an oral ATP-competitive multi-AGC kinase inhibitor. Gene expression microarray studies were undertaken to characterize the molecular mechanisms of action of AT13148. RESULTS: AT13148 caused substantial blockade of AKT, p70S6K, PKA, ROCK, and SGK substrate phosphorylation and induced apoptosis in a concentration and time-dependent manner in cancer cells with clinically relevant genetic defects in vitro and in vivo. Antitumor efficacy in HER2-positive, PIK3CA-mutant BT474 breast, PTEN-deficient PC3 human prostate cancer, and PTEN-deficient MES-SA uterine tumor xenografts was shown. We show for the first time that induction of AKT phosphorylation at serine 473 by AT13148, as reported for other ATP-competitive inhibitors of AKT, is not a therapeutically relevant reactivation step. Gene expression studies showed that AT13148 has a predominant effect on apoptosis genes, whereas the selective AKT inhibitor CCT128930 modulates cell-cycle genes. Induction of upstream regulators including IRS2 and PIK3IP1 as a result of compensatory feedback loops was observed. CONCLUSIONS: The clinical candidate AT13148 is a novel oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity, which shows a distinct mechanism of action from other AKT inhibitors. AT13148 will now be assessed in a first-in-human phase I trial.


Subject(s)
Antineoplastic Agents/administration & dosage , Neoplasms , Phosphatidylinositol 3-Kinase/metabolism , Protein Kinase Inhibitors/administration & dosage , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
4.
Mol Cancer Ther ; 10(2): 360-71, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21191045

ABSTRACT

AKT is frequently deregulated in cancer, making it an attractive anticancer drug target. CCT128930 is a novel ATP-competitive AKT inhibitor discovered using fragment- and structure-based approaches. It is a potent, advanced lead pyrrolopyrimidine compound exhibiting selectivity for AKT over PKA, achieved by targeting a single amino acid difference. CCT128930 exhibited marked antiproliferative activity and inhibited the phosphorylation of a range of AKT substrates in multiple tumor cell lines in vitro, consistent with AKT inhibition. CCT128930 caused a G(1) arrest in PTEN-null U87MG human glioblastoma cells, consistent with AKT pathway blockade. Pharmacokinetic studies established that potentially active concentrations of CCT128930 could be achieved in human tumor xenografts. Furthermore, CCT128930 also blocked the phosphorylation of several downstream AKT biomarkers in U87MG tumor xenografts, indicating AKT inhibition in vivo. Antitumor activity was observed with CCT128930 in U87MG and HER2-positive, PIK3CA-mutant BT474 human breast cancer xenografts, consistent with its pharmacokinetic and pharmacodynamic properties. A quantitative immunofluorescence assay to measure the phosphorylation and total protein expression of the AKT substrate PRAS40 in hair follicles is presented. Significant decreases in pThr246 PRAS40 occurred in CCT128930-treated mouse whisker follicles in vivo and human hair follicles treated ex vivo, with minimal changes in total PRAS40. In conclusion, CCT128930 is a novel, selective, and potent AKT inhibitor that blocks AKT activity in vitro and in vivo and induces marked antitumor responses. We have also developed a novel biomarker assay for the inhibition of AKT in human hair follicles, which is currently being used in clinical trials.


Subject(s)
Antineoplastic Agents , Biomarkers, Pharmacological/analysis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Pyrroles/pharmacology , Pyrroles/pharmacokinetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Hair Follicle/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/enzymology , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Pyrroles/chemistry , Xenograft Model Antitumor Assays
5.
Mol Cancer Ther ; 9(5): 1100-10, 2010 May.
Article in English | MEDLINE | ID: mdl-20423992

ABSTRACT

The serine/threonine kinase AKT plays a pivotal role in signal transduction events involved in malignant transformation and chemoresistance and is an attractive target for the development of cancer therapeutics. Fragment-based lead discovery, combined with structure-based drug design, has recently identified AT7867 as a novel and potent inhibitor of both AKT and the downstream kinase p70 S6 kinase (p70S6K) and also of protein kinase A. This ATP-competitive small molecule potently inhibits both AKT and p70S6K activity at the cellular level, as measured by inhibition of GSK3beta and S6 ribosomal protein phosphorylation, and also causes growth inhibition in a range of human cancer cell lines as a single agent. Induction of apoptosis was detected by multiple methods in tumor cells following AT7867 treatment. Administration of AT7867 (90 mg/kg p.o. or 20 mg/kg i.p.) to athymic mice implanted with the PTEN-deficient U87MG human glioblastoma xenograft model caused inhibition of phosphorylation of downstream substrates of both AKT and p70S6K and induction of apoptosis, confirming the observations made in vitro. These doses of AT7867 also resulted in inhibition of human tumor growth in PTEN-deficient xenograft models. These data suggest that the novel strategy of AKT and p70S6K blockade may have therapeutic value and supports further evaluation of AT7867 as a single-agent anticancer strategy.


Subject(s)
Cell Proliferation/drug effects , Neoplasms/drug therapy , Oncogene Protein v-akt/antagonists & inhibitors , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Down-Regulation/drug effects , HCT116 Cells , HT29 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Biological , Models, Molecular , Neoplasms/metabolism , Neoplasms/pathology , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics , Treatment Outcome , Xenograft Model Antitumor Assays
6.
Curr Opin Pharmacol ; 8(4): 393-412, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18721898

ABSTRACT

The strategy of 'drugging the cancer kinome' has led to the successful development and regulatory approval of several novel molecular targeted agents. The spotlight is now shifting to the phosphatidylinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) pathway as a key potential target. This review details the role of the pathway in oncogenesis and the rationale for inhibiting its vital components. The focus will be on the progress made in the development of novel therapies for cancer treatment, with emphasis placed on agents that have entered clinical development. Strategies involving horizontal and vertical blockade of the pathway, as well as the use of biomarkers to select appropriate patients and to provide proof of target modulation will also be highlighted. Finally, we discuss the issues and limitations involved with targeting the PI3K-AKT-mTOR pathway, and predict what the future may hold for these novel anticancer therapeutics.


Subject(s)
Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases/physiology , Protein Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Signal Transduction/drug effects , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Neoplasms/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , TOR Serine-Threonine Kinases
7.
Mol Cancer Ther ; 4(9): 1369-77, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16170029

ABSTRACT

The small-molecule compound pifithrin-alpha (PFT-alpha) has been reported to inhibit p53 function and protect against a variety of genotoxic agents. We show here that PFT-alpha is unstable in tissue culture medium and is rapidly converted to its condensation product PFT-beta. Both compounds showed limited solubility with PFT-alpha precipitating out of tissue culture medium at concentrations >30 micromol/L. PFT-alpha and -beta exhibited cytotoxic effects in vitro towards two human wild-type p53-expressing tumor cell lines, A2780 ovarian and HCT116 colon (IC(50) values for both cell lines were 21.3 +/- 8.1 micromol/L for PFT-alpha and 90.3 +/- 15.5 micromol/L for PFT-beta, mean +/- SD, n = 4). There was no evidence of protection by clonogenic assay with either compound in combination with ionizing radiation. Indeed, there was some evidence that PFT-alpha enhanced cytotoxicity, particularly at higher concentrations of PFT-alpha. Neither compound had any effect on p53, p21, or MDM-2 protein expression following ionizing radiation exposure and there was no evidence of any abrogation of p53-dependent, ionizing radiation-induced cell cycle arrest. Similarly, there was no evidence of cellular protection, or of effects on p53-dependent gene transcription, or on translation of MDM-2 or p21 following UV treatment of these human tumor cell lines. In addition, there was no effect on p53 or p21 gene transactivation or p38 phosphorylation after UV irradiation of NIH-3T3 mouse fibroblasts. In conclusion, neither PFT-alpha nor -beta can be regarded as a ubiquitous inhibitor of p53 function, and caution should be exercised in the use of these agents as specific p53 inhibitors.


Subject(s)
Colonic Neoplasms/metabolism , Ovarian Neoplasms/metabolism , Thiazoles/pharmacology , Toluene/analogs & derivatives , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Benzothiazoles , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Line, Tumor , Cells, Cultured , Colonic Neoplasms/pathology , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/radiation effects , Humans , Mice , Mitogen-Activated Protein Kinases/metabolism , NIH 3T3 Cells , Ovarian Neoplasms/pathology , Phosphorylation/drug effects , Phosphorylation/radiation effects , Radiation Tolerance , Radiation, Ionizing , Toluene/pharmacology , Tumor Suppressor Protein p53/metabolism
8.
Cancer Res ; 64(1): 262-72, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14729633

ABSTRACT

Deregulation of the cell cycle commonly occurs during tumorigenesis, resulting in unrestricted cell proliferation and independence from mitogens. Cyclin-dependent kinase inhibitors have the potential to induce cell cycle arrest and apoptosis in cancer cells. CYC202 (R-roscovitine) is a potent inhibitor of CDK2/cyclin E that is undergoing clinical trials. Drugs selected to act on a particular molecular target may exert additional or alternative effects in intact cells. We therefore studied the molecular pharmacology of CYC202 in human colon cancer cells. Treatment of HT29 and KM12 colon carcinoma cell lines with CYC202 decreased both retinoblastoma protein phosphorylation and total retinoblastoma protein. In addition, an increase in the phosphorylation of extracellular signal-regulated kinases 1/2 was observed. As a result, downstream activation of the mitogen-activated protein kinase pathway occurred, as demonstrated by an increase in ELK-1 phosphorylation and in c-FOS expression. Use of mitogen-activated protein kinase kinases 1/2 inhibitors showed that the CYC202-induced extracellular signal-regulated kinases 1/2 phosphorylation was mitogen-activated protein kinase kinases 1/2 dependent but did not contribute to the cell cycle effects of the drug, which included a reduction of cells in G(1), inhibition of bromodeoxyuridine incorporation during S-phase, and a moderate increase in G(2)-M phase. Despite activation of the mitogen-activated protein kinase pathway, cyclin D1 protein levels were decreased by CYC202, an effect that occurred simultaneously with loss of retinoblastoma protein phosphorylation and inhibition of cell cycle progression. The reduced expression of cyclin D1 protein was independent of the p38(SAPK) and phosphatidylinositol 3-kinase pathways, which are known regulators of cyclin D1 protein. Interestingly, CYC202 caused a clear reduction in cyclins D1, A, and B1 mRNA, whereas c-FOS mRNA increased by 2-fold. This was accompanied by a loss of RNA polymerase II phosphorylation and total RNA polymerase II protein, suggesting that CYC202 was inhibiting transcription, possibly via inhibition of CDK7 and CDK9 complexes. It can be concluded that although CYC202 can act as a CDK2 inhibitor, it also has the potential to inhibit CDK4 and CDK1 activities in cancer cells through the down-regulation of the corresponding cyclin partners. This provides a possible mechanism by which CYC202 can cause a reduction in retinoblastoma protein phosphorylation at multiple sites and cell cycle arrest in G(1), S, and G(2)-M phases. In addition to providing useful insights into the molecular pharmacology of CYC202 in human cancer cells, the results also suggest potential pharmacodynamic end points for use in clinical trials with the drug.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin D1/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Purines/toxicity , Retinoblastoma Protein/metabolism , 3T3 Cells , Animals , Cell Cycle/drug effects , Cell Division/drug effects , Colonic Neoplasms , Enzyme Activation/drug effects , Enzyme Inhibitors/toxicity , Flow Cytometry , Humans , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Retinoblastoma Protein/antagonists & inhibitors , Roscovitine , Tumor Cells, Cultured
9.
Prog Cell Cycle Res ; 5: 145-58, 2003.
Article in English | MEDLINE | ID: mdl-14593708

ABSTRACT

We are in a new era of drug discovery, in which it is feasible to develop therapeutic agents targeted at a particular protein or biological activity in a living cell. This has been made possible by major advances in our understanding of cell and molecular biology, epitomized by the 2001 Nobel prize award for Physiology or Medicine to Lee Hartwell, Tim Hunt and Paul Nurse, who were recognised for their work on key regulators of the cell cycle. Technological advances have also played a decisive role, leading to the sequencing of the human genome and increased throughput at many stages of the drug discovery and development process. For example, developments in high throughput screening, structural biology and microarray technology are increasing the speed of drug discovery. In this chapter we focus on the long, and often difficult, pathway which leads from identification of a hit in a screen to regulatory approval of a drug for disease treatment. The emphasis in this chapter is on the development of anticancer drugs, as this is our own area of expertise and also because cancer is a disease in which the cell cycle is already a major target for therapeutic intervention. However, many of the concepts, approaches and issues are generally common to other therapeutic areas.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Drug Screening Assays, Antitumor/methods , Neoplasms/drug therapy , Animals , Cell Cycle/physiology , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Clinical Trials as Topic/trends , Drug Design , Drug Screening Assays, Antitumor/trends , Humans , Neoplasms/genetics , Neoplasms/metabolism
10.
J Natl Cancer Inst ; 95(21): 1624-33, 2003 Nov 05.
Article in English | MEDLINE | ID: mdl-14600095

ABSTRACT

BACKGROUND: 17-allylamino,17-demethoxygeldanamycin (17AAG) is a novel anticancer drug that inhibits heat shock protein 90 (Hsp90), resulting in proteasomal degradation of several oncogenic proteins. We used phosphorus magnetic resonance spectroscopy (31P-MRS) to determine whether 17AAG treatment leads to alterations in phospholipids that could serve as pharmacodynamic markers for tumor response to 17AAG. METHODS: HCT116, HT29, and SW620 colon cancer cells were treated with 17AAG, and extracts were examined by 31P-MRS. HT29 cells were also treated with the active metabolite of 17AAG, 17-amino,17-demethoxygeldanamycin (17AG), or the inactive 17AAG analog NSC683666. MF-1 nude mice carrying HT29 xenografts were examined using in vivo 31P-MRS before and after 17AAG treatment; xenograft tumor extracts were examined by 31P-MRS and proton MRS (1H-MRS). Hsp90 client protein expression was determined by using western blots. Two-tailed t tests were used to compare metabolite concentrations and ratios, and a Mann-Whitney U test was used to compare proportions. All statistical tests were two-sided. RESULTS: 17AAG treatment led to statistically significantly increased phosphocholine levels in all three cell lines (P =.02). 17AG treatment also increased phosphocholine levels in HT29 cells, whereas NSC683666 had no effect. The phosphomonoester/phosphodiester ratio was statistically significantly increased in the HT29 xenografts after 17AAG treatment relative to the pretreatment ratio (P =.02), whereas no statistically significant change was observed after vehicle treatment (P =.62). Statistically significant increases in phosphocholine, phosphoethanolamine, and valine levels were also observed in tumor extracts treated with 17AAG. CONCLUSIONS: Inhibition of Hsp90 by 17AAG resulted in altered phospholipid metabolism in cultured tumor cells and in tumor xenografts. The increases observed in phosphocholine and phosphomonoester levels suggest that these metabolites may have the potential to act as noninvasive pharmacodynamic markers for analyzing tumor response to treatment with 17AAG or other Hsp90 inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , HSP90 Heat-Shock Proteins/pharmacology , Magnetic Resonance Spectroscopy , Rifabutin/analogs & derivatives , Rifabutin/pharmacology , Animals , Benzoquinones , Blotting, Western , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Humans , Lactams, Macrocyclic , Magnetic Resonance Spectroscopy/methods , Mice , Mice, Nude , Phosphorus Isotopes , Protein Serine-Threonine Kinases/antagonists & inhibitors , Transplantation, Heterologous , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL
...