Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
IUCrJ ; 11(Pt 2): 260-274, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38446458

ABSTRACT

The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.


Subject(s)
Gammaproteobacteria , Oxidation-Reduction , Mixed Function Oxygenases , Polysaccharides
2.
J Am Chem Soc ; 145(37): 20672-20682, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37688545

ABSTRACT

Oxygenase and peroxygenase enzymes generate intermediates at their active sites which bring about the controlled functionalization of inert C-H bonds in substrates, such as in the enzymatic conversion of methane to methanol. To be viable catalysts, however, these enzymes must also prevent oxidative damage to essential active site residues, which can occur during both coupled and uncoupled turnover. Herein, we use a combination of stopped-flow spectroscopy, targeted mutagenesis, TD-DFT calculations, high-energy resolution fluorescence detection X-ray absorption spectroscopy, and electron paramagnetic resonance spectroscopy to study two transient intermediates that together form a protective pathway built into the active sites of copper-dependent lytic polysaccharide monooxygenases (LPMOs). First, a transient high-valent species is generated at the copper histidine brace active site following treatment of the LPMO with either hydrogen peroxide or peroxyacids in the absence of substrate. This intermediate, which we propose to be a CuII-(histidyl radical), then reacts with a nearby tyrosine residue in an intersystem-crossing reaction to give a ferromagnetically coupled (S = 1) CuII-tyrosyl radical pair, thereby restoring the histidine brace active site to its resting state and allowing it to re-enter the catalytic cycle through reduction. This process gives the enzyme the capacity to minimize damage to the active site histidine residues "on the fly" to increase the total turnover number prior to enzyme deactivation, highlighting how oxidative enzymes are evolved to protect themselves from deleterious side reactions during uncoupled turnover.


Subject(s)
Copper , Histidine , Mixed Function Oxygenases , Oxidative Stress , Catalysis
3.
FEBS Lett ; 597(4): 485-494, 2023 02.
Article in English | MEDLINE | ID: mdl-36660911

ABSTRACT

The copper histidine brace is a structural unit in metalloproteins (Proc Natl Acad Sci USA 2011, 108, 15079). It consists of a copper ion chelated by the NH2 and π-N atom of an N-terminal histidine, and the τ-N atom of a further histidine, in an overall T-shaped coordination geometry (Nat Catal 2018, 1, 571). Like haem-containing proteins, histidine-brace-containing proteins have peroxygenase and/or oxygenase activity, where the substrates are notable for resistance to oxidation, for example, lytic polysaccharide monooxygenases (LPMOs). Moreover, the histidine brace is an invariant unit around which different protein structures exert different activities. Given the similarities in the diversity of function of proteins that contain either the copper histidine brace or haem, the question arises as to whether the functions of histidine brace-containing proteins duplicate those containing haem groups.


Subject(s)
Copper , Histidine , Copper/metabolism , Histidine/metabolism , Heme/metabolism , Oxidation-Reduction
4.
J Biol Inorg Chem ; 27(8): 705-713, 2022 12.
Article in English | MEDLINE | ID: mdl-36208326

ABSTRACT

LPMOs are enzymes which catalyse the oxidation of a C-H bond within polysaccharides, leading to their oxidative cleavage. To achieve this, LPMOs employ highly reactive oxidising intermediates, the generation of which is likely coupled to substrate binding to the enzyme. The nature of this coupling is unknown. Here we report a statistical comparison for four three-dimensional structures of an AA9 LPMO crystallised in the same space group but in different oxidation and substrate-binding states, to determine which significant structural perturbations occur at the enzyme upon either oxidation state change or the binding of substrate. In a novel step, we determine the global random error associated with the positional coordinates of atoms using the method of moments to ascertain the statistical estimators of Gaussian distributions of pairwise RMS differences between individual atoms in different structures. The results show that a change in the oxidation state of the copper leads to no significant structural changes, and that binding of the substrate leads to a single change in the conformation of a tryptophan residue. This tryptophan has previously been identified as part of a charge transfer pathway between the active site and the external surface of the protein, and the structural change identified herein may be part of the substrate-enzyme coupling mechanism.


Subject(s)
Mixed Function Oxygenases , Tryptophan , Mixed Function Oxygenases/chemistry , Tryptophan/metabolism , Polysaccharides/metabolism , Oxidation-Reduction , Catalytic Domain , Substrate Specificity
5.
Proc Natl Acad Sci U S A ; 119(37): e2206905119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067318

ABSTRACT

The protein mediator of ERBB2-driven cell motility 1 (Memo1) is connected to many signaling pathways that play key roles in cancer. Memo1 was recently postulated to bind copper (Cu) ions and thereby promote the generation of reactive oxygen species (ROS) in cancer cells. Since the concentration of Cu as well as ROS are increased in cancer cells, both can be toxic if not well regulated. Here, we investigated the Cu-binding capacity of Memo1 using an array of biophysical methods at reducing as well as oxidizing conditions in vitro. We find that Memo1 coordinates two reduced Cu (Cu(I)) ions per protein, and, by doing so, the metal ions are shielded from ROS generation. In support of biological relevance, we show that the cytoplasmic Cu chaperone Atox1, which delivers Cu(I) in the secretory pathway, can interact with and exchange Cu(I) with Memo1 in vitro and that the two proteins exhibit spatial proximity in breast cancer cells. Thus, Memo1 appears to act as a Cu(I) chelator (perhaps shuttling the metal ion to Atox1 and the secretory path) that protects cells from Cu-mediated toxicity, such as uncontrolled formation of ROS. This Memo1 functionality may be a safety mechanism to cope with the increased demand of Cu ions in cancer cells.


Subject(s)
Copper Transport Proteins , Copper , Intracellular Signaling Peptides and Proteins , Metallochaperones , Molecular Chaperones , Cell Line, Tumor , Copper/metabolism , Copper Transport Proteins/genetics , Copper Transport Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Ions/metabolism , Metallochaperones/genetics , Metallochaperones/metabolism , Models, Molecular , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Oxidation-Reduction , Protein Binding , Reactive Oxygen Species/metabolism
6.
Green Chem ; 24(12): 4845-4858, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35813357

ABSTRACT

Wood-feeding termites effectively degrade plant biomass through enzymatic degradation. Despite their high efficiencies, however, individual glycoside hydrolases isolated from termites and their symbionts exhibit anomalously low effectiveness in lignocellulose degradation, suggesting hereto unknown enzymatic activities in their digestome. Herein, we demonstrate that an ancient redox-active enzyme encoded by the lower termite Coptotermes gestroi, a Cu/Zn superoxide dismutase (CgSOD-1), plays a previously unknown role in plant biomass degradation. We show that CgSOD-1 transcripts and peptides are up-regulated in response to an increased level of lignocellulose recalcitrance and that CgSOD-1 localizes in the lumen of the fore- and midguts of C. gestroi together with termite main cellulase, CgEG-1-GH9. CgSOD-1 boosts the saccharification of polysaccharides by CgEG-1-GH9. We show that the boosting effect of CgSOD-1 involves an oxidative mechanism of action in which CgSOD-1 generates reactive oxygen species that subsequently cleave the polysaccharide. SOD-type enzymes constitute a new addition to the growing family of oxidases, ones which are up-regulated when exposed to recalcitrant polysaccharides, and that are used by Nature for biomass degradation.

7.
Microbiol Spectr ; 10(3): e0212521, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35658600

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes found in viruses, archaea, and bacteria as well as eukaryotes, such as fungi, algae and insects, actively contributing to the degradation of different polysaccharides. In Aspergillus nidulans, LPMOs from family AA9 (AnLPMO9s), along with an AA3 cellobiose dehydrogenase (AnCDH1), are cosecreted upon growth on crystalline cellulose and lignocellulosic substrates, indicating their role in the degradation of plant cell wall components. Functional analysis revealed that three target LPMO9s (AnLPMO9C, AnLPMO9F and AnLPMO9G) correspond to cellulose-active enzymes with distinct regioselectivity and activity on cellulose with different proportions of crystalline and amorphous regions. AnLPMO9s deletion and overexpression studies corroborate functional data. The abundantly secreted AnLPMO9F is a major component of the extracellular cellulolytic system, while AnLPMO9G was less abundant and constantly secreted, and acts preferentially on crystalline regions of cellulose, uniquely displaying activity on highly crystalline algae cellulose. Single or double deletion of AnLPMO9s resulted in about 25% reduction in fungal growth on sugarcane straw but not on Avicel, demonstrating the contribution of LPMO9s for the saprophytic fungal lifestyle relies on the degradation of complex lignocellulosic substrates. Although the deletion of AnCDH1 slightly reduced the cellulolytic activity, it did not affect fungal growth indicating the existence of alternative electron donors to LPMOs. Additionally, double or triple knockouts of these enzymes had no accumulative deleterious effect on the cellulolytic activity nor on fungal growth, regardless of the deleted gene. Overexpression of AnLPMO9s in a cellulose-induced secretome background confirmed the importance and applicability of AnLPMO9G to improve lignocellulose saccharification. IMPORTANCE Fungal lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that boost plant biomass degradation in combination with glycoside hydrolases. Secretion of LPMO9s arsenal by Aspergillus nidulans is influenced by the substrate and time of induction. These findings along with the biochemical characterization of novel fungal LPMO9s have implications on our understanding of their concerted action, allowing rational engineering of fungal strains for biotechnological applications such as plant biomass degradation. Additionally, the role of oxidative players in fungal growth on plant biomass was evaluated by deletion and overexpression experiments using a model fungal system.


Subject(s)
Aspergillus nidulans , Mixed Function Oxygenases , Aspergillus nidulans/genetics , Cellulose/chemistry , Cellulose/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Lignin , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Polysaccharides , Secretome
9.
Neuroscience ; 487: 47-65, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35124164

ABSTRACT

Ischemic stroke often co-occurs with Alzheimer's disease (AD) leading to a worsened clinical outcome. Neuroinflammation is a critical process implicated in AD and ischemic pathology, associated with cognitive decline. We sought to investigate the combined effects of ischemic stroke induced by endothelin-1 injection in two AD rat models, using motor function, memory and microglial inflammation in the basal forebrain and striatum as readouts. In addition, we sought to determine the effectiveness of the antioxidant biologic CAT-SKL in one of the models. The early AD model employed the bilateral intracerebroventricular injections of the toxic ß-amyloid peptide Aß25-35, the prodromal AD model used the transgenic Fischer 344 rat overexpressing a pathological mutant human amyloid precursor protein. Motor function was assessed using a cylinder, modified sticky tape and beam-walk tasks; learning and memory were tested in the Morris water maze. Microglial activation was examined using immunohistochemistry. Aß25-35 toxicity and stroke combination greatly increased microglial inflammation in the basal forebrain. Prodromal AD-pathology coupled with ischemia in the transgenic rat resulted in a greater microgliosis in the striatum. Combined transgenic rats showed balance alterations, comorbid Aß25-35 rats showed a transient sensorimotor deficit, and both demonstrated spatial reference memory deficit. CAT-SKL treatment ameliorated memory impairment and basal forebrain microgliosis in Aß25-35 rats with stroke. Our results suggest that neuroinflammation could be one of the early processes underlying the interaction of AD with stroke and contributing to the cognitive impairment, and that therapies such as antioxidant CAT-SKL could be a potential therapeutic strategy.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Ischemic Stroke , Stroke , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Antioxidants/metabolism , Catalase/metabolism , Cognitive Dysfunction/metabolism , Disease Models, Animal , Inflammation/metabolism , Maze Learning/physiology , Memory Disorders/metabolism , Microglia/metabolism , Rats , Rats, Transgenic , Stroke/pathology
10.
Faraday Discuss ; 234(0): 232-244, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35156976

ABSTRACT

The nonheme iron(IV)-oxido complex trans-N3-[(L1)FeIVO(Cl)]+, where L1 is a derivative of the tetradentate bispidine 2,4-di(pyridine-2-yl)-3,7-diazabicyclo[3.3.1]nonane-1-one, has an S = 1 electronic ground state and is the most reactive nonheme iron model system known so far, of a similar order of reactivity as nonheme iron enzymes (C-H abstraction of cyclohexane, -90 °C (propionitrile), t1/2 = 3.5 s). The reaction with cyclohexane selectively leads to chlorocyclohexane, but "cage escape" at the [(L1)FeIII(OH)(Cl)]+/cyclohexyl radical intermediate lowers the productivity. Ligand field theory is used herein to analyze the d-d transitions of [(L1)FeIVO(X)]n+ (X = Cl-, Br-, MeCN) in comparison with the thoroughly characterized ferryl complex of tetramethylcyclam (TMC = L2; [(L2)FeIVO(MeCN)]2+). The ligand field parameters and d-d transition energies are shown to provide important information on the triplet-quintet gap and its correlation with oxidation reactivity.


Subject(s)
Ferric Compounds , Iron , Cyclohexanes , Ligands
11.
Faraday Discuss ; 234(0): 336-348, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35171174

ABSTRACT

The active site of the polysaccharide-degrading lytic polysaccharide monooxygenase (LPMO) enzyme features a single copper ion coordinated by a histidine brace. The primary coordination sphere of the copper contains several ligating atoms which are bonded to ionisable protons (e.g. OH2, NH2), the pKas of which are unknown. Using a combination of CW-EPR X-band spectroscopy over a range of pH values and DFT calculations, we show that the active site of a chitin-active AA10 LPMO can exist in three different protonation states (pKa1 = 8.7, pKa2 ∼ 11.5), representing the ionisation of the coordinating groups. The middle pH species (fully formed at pH ∼ 10.5) is proposed to be Cu(II)(His)2(OH)2 (N2O2 coordination) with a decoordinated R-NH3+ group at the amino terminus. This species also sees a rotation of the SOMO equatorial plane from the canonical histidine brace plane, whereby the nominal Cu d(x2 - y2)-orbital has rotated some 45° along the His-Cu(II)-His axis, driven by the elongation and decoordination of the amino group. The highest pH species (>12) is proposed to exist as a Cu(II)-azanide, in which the NH2 of the amino terminus has been deprotonated. The high pH means that this species is unlikely to be biologically relevant in the catalytic cycle of AA10 LPMOs.


Subject(s)
Histidine , Mixed Function Oxygenases , Copper/chemistry , Density Functional Theory , Electron Spin Resonance Spectroscopy , Histidine/chemistry , Mixed Function Oxygenases/chemistry , Polysaccharides/chemistry
12.
Protein Sci ; 31(3): 591-601, 2022 03.
Article in English | MEDLINE | ID: mdl-34897841

ABSTRACT

Pseudomonas putida W619 is a soil Gram-negative bacterium commonly used in environmental studies thanks to its ability in degrading many aromatic compounds. Its genome contains several putative carbohydrate-active enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases (PMOs). In this study, we have heterologously produced in Escherichia coli and characterized a new enzyme belonging to the AA10 family, named PpAA10 (Uniprot: B1J2U9), which contains a chitin-binding type-4 module and showed activity toward ß-chitin. The active form of the enzyme was produced in E. coli exploiting the addition of a cleavable N-terminal His tag which ensured the presence of the copper-coordinating His as the first residue. Electron paramagnetic resonance spectroscopy showed signal signatures similar to those observed for the copper-binding site of chitin-cleaving PMOs. The protein was used to develop a versatile, highly sensitive, cost-effective and easy-to-apply method to detect PMO's activity exploiting attenuated total reflection-Fourier transform infrared spectroscopy and able to easily discriminate between different substrates.


Subject(s)
Mixed Function Oxygenases , Pseudomonas putida , Escherichia coli/genetics , Escherichia coli/metabolism , Mixed Function Oxygenases/chemistry , Polysaccharides/chemistry , Spectroscopy, Fourier Transform Infrared , Substrate Specificity
13.
Science ; 373(6556): 774-779, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34385392

ABSTRACT

The oomycete Phytophthora infestans is a damaging crop pathogen and a model organism to study plant-pathogen interactions. We report the discovery of a family of copper-dependent lytic polysaccharide monooxygenases (LPMOs) in plant pathogenic oomycetes and its role in plant infection by P. infestans We show that LPMO-encoding genes are up-regulated early during infection and that the secreted enzymes oxidatively cleave the backbone of pectin, a charged polysaccharide in the plant cell wall. The crystal structure of the most abundant of these LPMOs sheds light on its ability to recognize and degrade pectin, and silencing the encoding gene in P. infestans inhibits infection of potato, indicating a role in host penetration. The identification of LPMOs as virulence factors in pathogenic oomycetes opens up opportunities in crop protection and food security.


Subject(s)
Mixed Function Oxygenases/metabolism , Pectins/metabolism , Phytophthora infestans/enzymology , Plant Diseases/parasitology , Solanum lycopersicum/parasitology , Solanum tuberosum/parasitology , Copper , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Models, Molecular , Oxidation-Reduction , Phytophthora infestans/genetics , Phytophthora infestans/pathogenicity , Plant Leaves/parasitology , Polysaccharides/metabolism , Protein Conformation , Protein Domains , Virulence Factors/chemistry , Virulence Factors/genetics , Virulence Factors/metabolism
14.
Neurotox Res ; 39(5): 1418-1429, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34196954

ABSTRACT

The antioxidant enzyme catalase represents an important therapeutic target due to its role in mitigating cellular reactive oxygen species that contribute to the pathogenesis of many disease states. Catalase-SKL (CAT-SKL), a genetically engineered, peroxisome-targeted, catalase derivative, was developed in order to increase the therapeutic potential of the enzyme, and has previously been shown to be effective in combating oxidative stress in a variety of in vitro and in vivo models, thereby mitigating cellular degeneration and death. In the present study we addressed important considerations for the development of an extracellular vesicle-packaged version of CAT-SKL (evCAT-SKL) as a therapeutic for neurodegenerative diseases by investigating its delivery potential to the brain when administered intranasally, and safety by assessing off-target toxicity in a mouse model. Mice received weekly intranasal administrations of evCAT-SKL or empty extracellular vesicles for 4 weeks. Fluorescent labeling for CAT-SKL was observed throughout all sections of the brain in evCAT-SKL-treated mice, but not in empty extracellular vesicle-treated mice. Furthermore, we found no evidence of gross or histological abnormalities following evCAT-SKL or empty extracellular vesicle treatment in a full-body toxicological analysis. Combined, the successful brain targeting and the lack of off-target toxicity demonstrates that intranasal delivery of extracellular vesicle-packaged CAT-SKL holds promise as a therapeutic for addressing neurological disorders.


Subject(s)
Administration, Intranasal , Antioxidants/metabolism , Brain/metabolism , Catalase/metabolism , Extracellular Vesicles/metabolism , Animals , Antioxidants/administration & dosage , Brain/drug effects , Catalase/administration & dosage , Female , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells
15.
Nat Chem Biol ; 17(7): 837, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34045747
16.
J Inorg Biochem ; 216: 111316, 2021 03.
Article in English | MEDLINE | ID: mdl-33421883

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes which catalyze the oxidative cleavage of polysaccharides. LPMOs belonging to family 15 in the Auxiliary Activity (AA) class from the Carbohydrate-Active Enzyme database are found widespread across the Tree of Life, including viruses, algae, oomycetes and animals. Recently, two AA15s from the firebrat Thermobia domestica were reported to have oxidative activity, one towards cellulose or chitin and the other towards chitin, signalling that AA15 LPMOs from insects potentially have different biochemical functions. Herein, we report the identification and characterization of two family AA15 members from the lower termite Coptotermes gestroi. Addition of Cu(II) to CgAA15a or CgAA15b had a thermostabilizing effect on both. Using ascorbate and O2 as co-substrates, CgAA15a and CgAA15b were able to oxidize chitin, but showed no activity on celluloses, xylan, xyloglucan and starch. Structural models indicate that the LPMOs from C. gestroi (CgAA15a/CgAA15b) have a similar fold but exhibit key differences in the catalytic site residues when compared to the cellulose/chitin-active LPMO from T. domestica (TdAA15a), especially the presence of a non-coordinating phenylalanine nearby the Cu ion in CgAA15a/b, which appears as a tyrosine in the active site of TdAA15a. Despite the overall similarity in protein folds, however, mutation of the active site phenylalanine in CgAA15a to a tyrosine did not expanded the enzymatic specificity from chitin to cellulose. Our data show that CgAA15a/b enzymes are likely not involved in lignocellulose digestion but might play a role in termite developmental processes as well as on chitin and nitrogen metabolisms.


Subject(s)
Copper/chemistry , Insect Proteins/chemistry , Isoptera/enzymology , Mixed Function Oxygenases/chemistry , Models, Molecular , Animals , Copper/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Isoptera/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism
17.
Dalton Trans ; 49(43): 15219-15230, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33021299

ABSTRACT

We report cytotoxic ruthenium(ii) complexes of the general formula [RuCl(cis-tach)(diphosphine)]+ (cis-tach = cis-cis-1,3,5-triaminocyclohexane) that have been characterised by 1H, 13C and 31P{1H} NMR spectroscopy, mass spectrometry, X-ray crystallography and elemental analysis. The kinetics of aquation and stability of the active species have been studied, showing that the chlorido ligand is substituted by water at 298 K with first order rate constants of 10-2-10-3 s-1, ideal for potential clinical use as anti-tumour agents. Strong interactions with biologically relevant duplex and quadruplex DNA models correlate with the activity observed with A549, A2780 and 293T cell lines, and the degree of activity was found to be sensitive to the chelating diphosphine ligand. A label-free ptychographic cell imaging technique recorded cell death processes over 4 days. The Ru(ii) cis-tach diphosphine complexes exhibit anti-proliferative effects, in some cases outperforming cisplatin and other cytotoxic ruthenium complexes.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , DNA/metabolism , Phosphines/chemistry , Ruthenium/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/metabolism , Humans , Kinetics , Temperature
18.
Proc Natl Acad Sci U S A ; 117(32): 19178-19189, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32723819

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) have a unique ability to activate molecular oxygen for subsequent oxidative cleavage of glycosidic bonds. To provide insight into the mode of action of these industrially important enzymes, we have performed an integrated NMR/electron paramagnetic resonance (EPR) study into the detailed aspects of an AA10 LPMO-substrate interaction. Using NMR spectroscopy, we have elucidated the solution-phase structure of apo-BlLPMO10A from Bacillus licheniformis, along with solution-phase structural characterization of the Cu(I)-LPMO, showing that the presence of the metal has minimal effects on the overall protein structure. We have, moreover, used paramagnetic relaxation enhancement (PRE) to characterize Cu(II)-LPMO by NMR spectroscopy. In addition, a multifrequency continuous-wave (CW)-EPR and 15N-HYSCORE spectroscopy study on the uniformly isotope-labeled 63Cu(II)-bound 15N-BlLPMO10A along with its natural abundance isotopologue determined copper spin-Hamiltonian parameters for LPMOs to markedly improved accuracy. The data demonstrate that large changes in the Cu(II) spin-Hamiltonian parameters are induced upon binding of the substrate. These changes arise from a rearrangement of the copper coordination sphere from a five-coordinate distorted square pyramid to one which is four-coordinate near-square planar. There is also a small reduction in metal-ligand covalency and an attendant increase in the d(x2-y2) character/energy of the singly occupied molecular orbital (SOMO), which we propose from density functional theory (DFT) calculations predisposes the copper active site for the formation of a stable Cu-O2 intermediate. This switch in orbital character upon addition of chitin provides a basis for understanding the coupling of substrate binding with O2 activation in chitin-active AA10 LPMOs.


Subject(s)
Bacillus licheniformis/enzymology , Bacterial Proteins/chemistry , Chitin/metabolism , Mixed Function Oxygenases/chemistry , Oxygen/metabolism , Bacillus licheniformis/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Chitin/chemistry , Copper/chemistry , Copper/metabolism , Electron Spin Resonance Spectroscopy , Magnetic Resonance Imaging , Mixed Function Oxygenases/metabolism , Oxygen/chemistry , Substrate Specificity
19.
Nat Chem Biol ; 16(8): 815-816, 2020 08.
Article in English | MEDLINE | ID: mdl-32555381
20.
Dalton Trans ; 49(11): 3413-3422, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32125319

ABSTRACT

Probing the detailed interaction between lytic polysaccharide monooxygenases (LPMOs) and their polysaccharide substrates is key to revealing further insights into the mechanism of action of this class of enzymes on recalcitrant biomass. This investigation is somewhat hindered, however, by the insoluble nature of the substrates, which precludes the use of most optical spectroscopic techniques. Herein, we report a new semi-oriented EPR method which evaluates directly the binding of cellulose-active LPMOs to crystalline cellulose. We make use of the intrinsic order of cellulose fibres in Apium graveolens (celery) to orient the LPMO with respect to the magnetic field of an EPR spectrometer. The subsequent angle-dependent changes observed in the EPR spectra can then be related to the orientation of the g matrix principal directions with respect to the magnetic field of the spectrometer and, hence, to the binding of the enzyme onto the cellulose fibres. This method, which does not require specific modification of standard CW-EPR equipment, can be used as a general procedure to investigate LPMO-cellulose interactions.


Subject(s)
Cellulose/chemistry , Mixed Function Oxygenases/chemistry , Polysaccharides/chemistry , Apium/chemistry , Cellulose/metabolism , Electron Spin Resonance Spectroscopy , Magnetic Fields , Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...