Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 99(1): 93-9, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20451262

ABSTRACT

The potential for trophic transfer of aluminium (Al) was investigated using a grazing detritivore, the freshwater snail Lymnaea stagnalis, and a predator, the signal crayfish Pacifastacus leniusculus. Snails were exposed to either aqueous Al (500 microg l(-1)) in the presence or absence of an inorganic ligand (phosphate (+P); 500 microg l(-1)) for 30 days, or kept as unexposed controls. Subcellular partitioning of Al in the snail tissues was characterised using ultracentrifugation. Al content in the soft tissues and the subcellular fractions was measured using inductively coupled plasma atomic emission spectroscopy. Exposed and control snails were fed to individually housed crayfish (n=6 per group) over 40 days. Water samples, uneaten snail tissue and faeces were collected throughout the experiment in order to assess the fate of Al. Behavioural toxicity to the crayfish was assessed at four time points, and tissue accumulation of Al in soft tissues was measured following a 2-day depuration period. Snails exposed to Al+P accumulated more Al per snail than those exposed to Al only (291 microg vs 206 microg), and also contained a higher proportion of detoxified Al (in inorganic granules and associated with heat stable proteins) (39% vs 26%). There were no significant differences in behavioural activity between the different groups of crayfish at any time point. Crayfish fed snails exposed to only Al accumulated significant levels of Al in their total soft tissues, compared to controls; crayfish fed Al+P-exposed snails did not, even though concentrations of Al in these snails were higher. The highest concentrations of Al were found in the green gland in both crayfish feeding groups, and the gut and hepatopancreas in crayfish fed Al only exposed snails; all of these were significantly higher than in crayfish fed control snails. There was no significant accumulation of Al in the gills or flexor muscle in any group. At least 17% of trophically available Al in the snail tissues was accumulated by the crayfish. This proportion was similar in both feeding groups but, as the proportion of trophically available Al in the snails exposed to Al+P was lower, this led to lower accumulation in the Al+P crayfish feeding group. This study indicates that in comparison to vertebrates, aquatic invertebrates accumulate a higher proportion of Al via oral ingestion but it does not accumulate in tissues that may pose a threat to human consumers.


Subject(s)
Aluminum/metabolism , Aluminum/toxicity , Aquatic Organisms/drug effects , Food Chain , Lymnaea/drug effects , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/metabolism , Astacoidea/physiology , Fresh Water , Gills/metabolism , Lymnaea/metabolism , Phosphates/metabolism , Phosphates/toxicity , Predatory Behavior/physiology , Spectrophotometry, Atomic , Time Factors , Tissue Distribution
2.
Biometals ; 23(2): 221-30, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19937462

ABSTRACT

Aluminum is a toxic metal whose complex aquatic chemistry, mechanisms of toxicity and trophic transfer are not fully understood. The only isotope of Al suitable for tracing experiments in organisms-(26)Al-is a rare, costly radioisotope with a low emission energy, making its use difficult. Gallium shares a similar chemistry with Al and was therefore investigated as a potential substitute for Al for use in aquatic organisms. The freshwater snail, Lymnaea stagnalis was exposed to either Al or Ga (0.0135 mM) under identical conditions for up to 40 days. Behavioural toxicity, metal accumulation in the tissues, and sub-cellular partitioning of the metals were determined. Al was more toxic than Ga and accumulated to significantly higher levels in the soft tissues (P < 0.05). The proportion of Al in the digestive gland (DG; detoxificatory organ) relative to other tissues was significantly lower than that of Ga (P < 0.05) from day 14 onwards. There were also differences in the proportions of Al and Ga associated with heat stable proteins (HSPs) in the digestive gland, with significantly more HSP present in the DGs of snails exposed to Al, but significantly less Al than Ga associated with the HSP per unit mass protein present. From this evidence, we conclude that Ga may be of limited use as a tracer for Al in animal systems.


Subject(s)
Aluminum/metabolism , Gallium/metabolism , Indicators and Reagents/metabolism , Staining and Labeling , Aluminum/toxicity , Animals , Behavior, Animal/drug effects , Female , Fresh Water , Gallium/toxicity , Indicators and Reagents/chemistry , Lymnaea/anatomy & histology , Lymnaea/drug effects , Lymnaea/metabolism , Ovum/drug effects , Ovum/physiology , Staining and Labeling/instrumentation , Staining and Labeling/methods , Subcellular Fractions/metabolism , Tissue Distribution
3.
Environ Pollut ; 157(7): 2142-6, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19285770

ABSTRACT

The amount of toxic metal accumulated by an organism is often taken as an indicator of potential toxicity. We investigated this relationship in the freshwater snail, Lymnaea stagnalis, exposed to 500 microg l(-1) Al over 30 days, either alone or in the presence of phosphate (500 microg l(-1) P) or a fulvic acid surrogate (FAS; 10 mg l(-1) C). Behavioural activity was assessed and tissue accumulation of Al quantified. Lability of Al within the water column was a good predictor of toxicity. FAS increased both Al lability and behavioural dysfunction, whereas phosphate reduced Al lability, and completely abolished Al-induced behavioural toxicity. Tissue accumulation of Al was not linked to toxicity. Higher levels of Al were accumulated in snails exposed to Al + P, compared to those exposed to Al alone, whereas FAS reduced Al accumulation. These findings demonstrate that the degree of tissue accumulation of a metal can be independent of toxicity.


Subject(s)
Aluminum/toxicity , Lymnaea/metabolism , Water Pollutants, Chemical/toxicity , Aluminum/pharmacokinetics , Animals , Behavior, Animal/drug effects , Environmental Exposure , Lymnaea/drug effects , Tissue Distribution , Toxicity Tests, Acute , Water Pollutants, Chemical/pharmacokinetics
4.
Environ Sci Technol ; 42(6): 2189-94, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18409657

ABSTRACT

Silicon (Si) ameliorates aluminum (Al) toxicity to a range of organisms, but in almost all cases this is due to ex vivo Si-Al interactions forming inert hydroxyaluminosilicates (HAS). We hypothesized a Si-specific intracellular mechanism for Al detoxification in aquatic snails, involving regulation of orthosilicic acid [Si(OH)4]. However, the possibility of ex vivo formation and uptake of soluble HAS could not be ruled out Here we provide unequivocal evidence for Si-Al interaction in vivo, including their intracellular colocalization. In snails preloaded with Si(0H)4, behavioral toxicity in response to subsequent exposure to Al was abolished. Similarly, recovery from Al-induced toxicity was faster when Si(OH)4 was provided, together with rapid loss of Al from the major detoxificatory organ (digestive gland). Temporal separation of Al and Si exposure excluded the possibility of their interaction ex vivo. Elemental mapping using analytical transmission electron microscopy revealed nanometre-scale colocalization of Si and Al within excretory granules in the digestive gland, consistent with recruitment of Si(OH)4, followed by high-affinity Al binding to form particles similarto allophane, an amorphous HAS. Given the environmental abundance of both elements, we anticipate this to be a widespread phenomenon, providing a cellular defense against the profoundly toxic Al(III) ion.


Subject(s)
Aluminum/toxicity , Lymnaea/drug effects , Silicic Acid/metabolism , Water Pollutants, Chemical/toxicity , Animals , Digestive System/metabolism , Digestive System/ultrastructure , Lymnaea/metabolism , Lymnaea/ultrastructure , Lysosomes/metabolism , Lysosomes/ultrastructure , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...