Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 111(24): 242503, 2013 Dec 13.
Article in English | MEDLINE | ID: mdl-24483648

ABSTRACT

The E1 strength distribution in 68Ni has been investigated using Coulomb excitation in inverse kinematics at the R3B-LAND setup and by measuring the invariant mass in the one- and two-neutron decay channels. The giant dipole resonance and a low-lying peak (pygmy dipole resonance) have been observed at 17.1(2) and 9.55(17) MeV, respectively. The measured dipole polarizability is compared to relativistic random phase approximation calculations yielding a neutron-skin thickness of 0.17(2) fm. A method and analysis applicable to neutron-rich nuclei has been developed, allowing for a precise determination of neutron skins in nuclei as a function of neutron excess.

2.
Phys Rev Lett ; 96(7): 072301, 2006 Feb 24.
Article in English | MEDLINE | ID: mdl-16606077

ABSTRACT

Differential production cross sections of K+/- mesons have been measured in p + C and p + Au collisions at 1.6, 2.5, and 3.5 GeV proton beam energy. At beam energies close to the production threshold, the K- multiplicity is strongly enhanced with respect to proton-proton collisions. According to microscopic transport calculations, this enhancement is caused by two effects: the strangeness exchange reaction NY --> K- NN and an attractive in-medium K- N potential at saturation density.

3.
Phys Rev Lett ; 95(13): 132501, 2005 Sep 23.
Article in English | MEDLINE | ID: mdl-16197134

ABSTRACT

The dipole strength distribution above the one-neutron separation energy was measured in the unstable 130Sn and the double-magic 132Sn isotopes. The results were deduced from Coulomb dissociation of secondary Sn beams with energies around 500 MeV/nucleon, produced by in-flight fission of a primary 238U beam. In addition to the giant dipole resonance, a resonancelike structure ("pygmy resonance") is observed at a lower excitation energy around 10 MeV exhausting a few percent of the isovector E1 energy-weighted sum rule. The results are discussed in the context of a predicted new dipole mode of excess neutrons oscillating out of phase with the core nucleons.

4.
Phys Rev Lett ; 95(1): 012301, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-16090609

ABSTRACT

Azimuthal distributions of pi+, K+, and K- mesons have been measured in Au+Au reactions at 1.5A GeV and Ni+Ni reactions at 1.93 A GeV. In semicentral collisions at midrapidity, pi+ and K+ mesons are emitted preferentially perpendicular to the reaction plane in both collision systems. In contrast for K- mesons in Ni+Ni reactions, an in-plane elliptic flow was observed for the first time at these incident energies.

5.
Phys Rev Lett ; 92(11): 112502, 2004 Mar 19.
Article in English | MEDLINE | ID: mdl-15089127

ABSTRACT

Differential cross sections for electromagnetic fission of 238U projectiles (500 MeV/u) in C, Sn, and Pb targets are measured and analyzed in terms of single- and multiphonon giant resonance excitations as doorway states to fission. A novel experimental method exploits the linear relationship between neutron multiplicity and the primary 238U excitation energy. Multiphonon states contribute up to 20% of the cross section; a component at high excitation energies is indicated that may arise from three-phonon dipole and two-phonon GDR x GQRiv giant resonance excitations.

6.
Phys Rev Lett ; 91(15): 152301, 2003 Oct 10.
Article in English | MEDLINE | ID: mdl-14611460

ABSTRACT

Differential production cross sections of K- and K+ mesons have been measured in Ni+Ni and Au+Au collisions at a beam energy of 1.5 A GeV. The K(-)/K(+) ratio is found to be nearly constant as a function of the collision centrality and system size. The spectral slopes and the polar emission pattern differ for K- and K+ mesons. These observations indicate that K+ mesons decouple earlier from the fireball than K- mesons.

7.
Phys Rev Lett ; 90(23): 232501, 2003 Jun 13.
Article in English | MEDLINE | ID: mdl-12857251

ABSTRACT

An exclusive measurement of the Coulomb breakup of 8B into 7Be+p at 254A MeV allowed the study of the angular correlations of the breakup particles. These correlations demonstrate clearly that E1 multipolarity dominates and that E2 multipolarity can be neglected. By using a simple single-particle model for 8B and treating the breakup in first-order perturbation theory, we extract a zero-energy S factor of S17(0)=18.6+/-1.2+/-1.0 eV b, where the first error is experimental and the second one reflects the theoretical uncertainty in the extrapolation.

8.
Phys Rev Lett ; 86(24): 5442-5, 2001 Jun 11.
Article in English | MEDLINE | ID: mdl-11415271

ABSTRACT

The dipole response of stable and unstable neutron-rich oxygen nuclei of masses A = 17 to A = 22 has been investigated experimentally utilizing electromagnetic excitation in heavy-ion collisions at beam energies about 600 MeV/nucleon. A kinematically complete measurement of the neutron decay channel in inelastic scattering of the secondary beam projectiles from a Pb target was performed. Differential electromagnetic excitation cross sections d sigma/dE were derived up to 30 MeV excitation energy. In contrast to stable nuclei, the deduced dipole strength distribution appears to be strongly fragmented and systematically exhibits a considerable fraction of low-lying strength.

9.
Phys Rev Lett ; 85(1): 18-21, 2000 Jul 03.
Article in English | MEDLINE | ID: mdl-10991148

ABSTRACT

The emission pattern of charged pions has been measured in Au+Au collisions at 1 GeV/nucleon incident energy. In peripheral collisions and at target rapidities, high-energy pions are emitted preferentially towards the target spectator matter. In contrast, low-energy pions are emitted predominantly in the opposite direction. The corresponding azimuthal anisotropy is explained by the interaction of pions with projectile and target spectator matter. This interaction with the spectator matter causes an effective shadowing which varies with time during the reaction. Our observations show that high-energy pions stem from the early stage of the collision whereas low-energy pions freeze out later.

SELECTION OF CITATIONS
SEARCH DETAIL
...