Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 11785, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27250570

ABSTRACT

Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

2.
J Phys Chem B ; 112(34): 10475-82, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18680332

ABSTRACT

Ion transport across tethered bilayer lipid membranes (tBLMs) is modeled using a hybrid network description which combines potential-dependent rate equations with passive electrical elements. Passive permeation of ions is described by the integrated Nernst-Planck equation. Simulations based on this model are performed with the network simulation program SPICE (simulation program with integrated circuit emphasis). Electrochemical impedance spectra of tBLMs are simulated with this algorithm and challenged by spectra measured with tBLMs submersed in 0.1 M KCl solution and subjected to various potential differences. It is found that the simulated spectra can only satisfactorily represent the experimental data if the permeability coefficients of the ions are dependent on the membrane potential. It is concluded that the mechanism of passive ion transport across the tBLM seems to follow the transient pore model rather than the solubility-diffusion model. This algorithm can be easily extended to include ion transport processes due to channels, carriers, or pumps incorporated into the tBLM.


Subject(s)
Computer Simulation , Lipid Bilayers/chemistry , Models, Biological , Algorithms , Electric Impedance , Electrochemistry , Electrodes , Gold/chemistry , Ion Transport , Permeability , Phosphatidylcholines/chemistry , Software , Spectrum Analysis/methods , Unilamellar Liposomes/chemistry
3.
Biophys J ; 94(9): 3698-705, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18222995

ABSTRACT

Bioelectronic coupling of multi-redox-site membrane proteins was accomplished with cytochrome c oxidase (CcO) as an example. A biomimetic membrane system was used for the oriented immobilization of the CcO oxidase on a metal electrode. When the protein is immobilized with the CcO binding side directed toward the electrode and reconstituted in situ into a lipid bilayer, it is addressable by direct electron transfer to the redox centers. Electron transfer to the enzyme via the spacer, referred to as electronic wiring, shows an exceptionally high rate constant. This allows a kinetic analysis of all four consecutive electron transfer steps within the enzyme to be carried out. Electron transfer followed by rapid scan cyclic voltammetry in combination with surface-enhanced resonance Raman spectroscopy provides mechanistic and structural information about the heme centers. Probing the enzyme under turnover conditions showed mechanistic insights into proton translocation coupled to electron transfer. This bioelectronic approach opens a new field of activity to investigate complex processes in a wide variety of membrane proteins.


Subject(s)
Biomimetic Materials/metabolism , Electron Transport Complex IV/metabolism , Rhodobacter sphaeroides/enzymology , Anaerobiosis , Electrochemistry , Electrodes , Electron Transport , Ion Transport , Kinetics , Protons
4.
Nature ; 445(7129): 741-4, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17301787

ABSTRACT

The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of approximately 52 GV m(-1). This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a metre for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

5.
Biophys J ; 89(3): 1650-6, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16006631

ABSTRACT

The bacterial flagellar motor is generally supposed to be a stepping mechanism. The main evidence for this is based on a fluctuation analysis of experiments with tethered bacteria in which rotation frequency was varied by applying an external torque: the variance in time taken for a fixed number of revolutions was found to be essentially proportional to the inverse square of the frequency. This behavior was shown to characterize a Poissonian stepper. Here we present a rigorous kinetic and stochastic analysis of elastic crossbridge stepping in tethered bacteria. We demonstrate that Poissonian stepping is a virtually unachievable limit. To the extent that a system may approach Poissonian stepping it cannot be influenced by an externally applied torque; stepping mechanisms capable of being so influenced are necessarily non-Poissonian and exhibit an approximately inverse cubic dependence. This conclusion applies whatever the torsional characteristics of the tether may be, and contrary to claims, no perceptible relaxation of the tether following each step is found. Furthermore, the inverse square dependence is a necessary but not sufficient condition for Poissonian stepping, since a nonstepping mechanism, which closely reproduces most experimental data, also fulfills this condition. Hence the inference that crossbridge-type stepping occurs is not justified.


Subject(s)
Bacteria/metabolism , Biophysics/methods , Escherichia coli/metabolism , Flagella/chemistry , Bacterial Physiological Phenomena , Bacterial Proteins/chemistry , Biomechanical Phenomena , Ions , Kinetics , Models, Statistical , Molecular Motor Proteins , Monte Carlo Method , Movement , Poisson Distribution , Rotation , Sodium/chemistry , Stochastic Processes , Stress, Mechanical
6.
Bioelectrochemistry ; 55(1-2): 89-92, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11786348

ABSTRACT

Both the bacterial flagellar motor and the H(+)/ATP synthase are membrane-bound macromolecular complexes in which the movement of protons through channels across the membrane is coupled to the rotation of a part of the complex around an axis perpendicular to the membrane. Despite this similarity, the two devices are designed for quite different functions. The flagellar motor is responsible for a practically smooth rotation of the flagellar filament in order to propel the cell. Smooth rotation is not essential for the H(+)/ATP synthase, which accumulates torque by twisting a rod-shaped structure. Possible mechanisms for generating torque in the two devices are presented, based on the models which have been proposed. The performances of the various mechanisms are discussed.


Subject(s)
Bacteria/enzymology , Proton-Translocating ATPases/metabolism , Protons , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...