Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 66(3): 237-49, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22449300

ABSTRACT

We review the rapid progress made in the applications of Raman spectroscopy to deep-ocean science. This is made possible by deployment of instrumentation on remotely operated vehicles used for providing power and data flow and for precise positioning on targets of interest. Early prototype systems have now been replaced by compact and robust units that have been deployed well over 100 times on an expeditionary basis over a very wide range of ocean depths without failure. Real-time access to the spectra obtained in the vehicle control room allows for expedition decision making. Quantification of some of the solutes in seawater or pore waters observed in the spectra is made possible by self-referencing to the ubiquitous ν(2) water bending peak. The applications include detection of the structure and composition of complex thermogenic gas hydrates both occurring naturally on the sea floor and in controlled sea floor experiments designed to simulate the growth of such natural systems. New developments in the ability to probe the chemistry of sediment pore waters in situ, long thought impossible candidates for Raman study due to fluorescence observed in recovered samples, have occurred. This permits accurate measurement of the abundance of dissolved methane and sulfide in sediment pore waters. In areas where a high gas flux is observed coming out of the sediments a difference of about ×30 between in situ Raman measurement and the quantity observed in recovered cores has been found. New applications under development include the ability to address deep-sea biological processes and the ability to survey the sea floor chemical conditions associated with potential sub-sea geologic CO(2) disposal in abandoned oil and gas fields.

2.
Environ Sci Technol ; 43(3): 610-5, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19244991

ABSTRACT

The long-term fate of chemical weapon debris disposed of in the ocean some 50 years ago, now sinking into marine sediments and leaking into the ocean environment, is poorly known. Direct evidence exists showing chemical weapon agents actively being released on the sea floor with detrimental effects including harm to marine life. Thus there is strong interest in determining the fate and lifetime of these materials, their decomposition products, and the affected zones around these sites. Here we study the geochemical properties of a mustard gas breakdown product, 1,4-thioxane (TO), using Raman spectroscopy. We show that TO forms a hydrate with a help-gas (a second guest added to stabilize the hydrate), such as methane or hydrogen sulfide, with the hydrate stability regime some 10 degrees C above pure methane hydrate. The temperature, pressure, and reducing conditions required for hydrate formation commonly occur at known disposal sites. The TO solubility was measured in seawater and found to vary from 0.65 to 0.63 mol/kg water between 4.5 and 25.0 degrees C. Similar to other hydrate systems, the TO solubility decreased in the presence of hydrate. A low solubility in water coupled with its ability to form a hydrate within marine sediments can greatly decrease molecular mobility and increase its lifetime. These results demonstrate how unanticipated reactions with marine sediments can occur, and how little is known of the processes controlling the environmental science of these materials.


Subject(s)
Chemical Warfare , Heterocyclic Compounds, 1-Ring/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Solubility , Spectrum Analysis, Raman
3.
Environ Sci Technol ; 39(24): 9630-6, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16475344

ABSTRACT

We used a newly developed in situ laser Raman spectrometer (LRS) for detection of elevated levels of dissolved CO2 in seawater. The experiment was carried out at 500 m depth, 6 degrees C, to examine new protocols for detection of CO2-enriched seawater emanating from a liquid CO2 source in the ocean, and to determine current detection limits under field conditions. A system of two interconnected 5 L chambers was built, with flow between them controlled by a valve and pump system, and this unit was mounted on an ROV. The first chamber was fitted with a pH electrode and the optical probe of the LRS. In the second chamber approximately 580 mL of liquid CO2 was introduced. Dissolution of CO2 across the CO2-seawater interface then occurred, the valves were opened, and a fixed volume of low-pH/CO2-enriched seawater was transferred to the first chamber for combined pH/Raman sensing, where we estimate a mean dissolution rate of approximately 0.5 (micromol/cm2)/s. This sequence was repeated, resulting in measurement of a progressively CO2 enriched seawater sample. The rapid in-growth of CO2 was readily detected as the Fermi dyad of the dissolved state with a detection limit of approximately 10 mM with spectral acquisition times of 150 s. The detection of background levels of CO2 species in seawater (approximately 2.2 mM, dominantly HCO3-) will require an improvement in instrument sensitivity by a factor of 5-10, which could be obtained by the use of a liquid core waveguide.


Subject(s)
Carbon Dioxide/analysis , Environmental Monitoring/methods , Seawater/chemistry , Animals , Electrodes , Hydrogen-Ion Concentration , Lasers , Spectrum Analysis, Raman/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...