Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Evol ; 91(4): 552-561, 2023 08.
Article in English | MEDLINE | ID: mdl-37147402

ABSTRACT

Genetic integrity of an accession should be preserved in the conservation of germplasm. Characterization of diverse germplasm based on a molecular basis enhances its conservation and use in breeding programs. The aim of this study was to assess the genetic diversity of 169 sorghum accessions using a total of 6977 SNP markers. The polymorphic information content of the markers was 0.31 which is considered to be moderately high. Structure analysis using ADMIXTURE program revealed a total of 10 subpopulations. Neighbor-joining tree revealed the presence of six main clusters among these subpopulations whereas in principal component analysis, seven clusters were identified. Cluster analysis grouped most populations depending on source of collection although other accessions originating from the same source were grouped under different clusters. Analysis of molecular variance (AMOVA) revealed 30% and 70% of the variation occurred within and among accessions, respectively. Gene flow within the populations was, however, limited indicating high differentiation within the subpopulation. Observed heterozygosity among accessions varied from 0.03 to 0.06 with a mean of 0.05 since sorghum is a self-pollinating crop. High genetic diversity among the subpopulations can be further explored for superior genes to develop new sorghum varieties.


Subject(s)
Polymorphism, Single Nucleotide , Sorghum , Polymorphism, Single Nucleotide/genetics , Genetic Variation/genetics , Sorghum/genetics
2.
Front Plant Sci ; 12: 671984, 2021.
Article in English | MEDLINE | ID: mdl-34305972

ABSTRACT

Striga hermonthica is the most important parasitic weed in sub-Saharan Africa and remains one of the most devastating biotic factors affecting sorghum production in the western regions of Kenya. Farmers have traditionally managed Striga using cultural methods, but the most effective and practical solution to poor smallholder farmers is to develop Striga-resistant varieties. This study was undertaken with the aim of identifying new sources of resistance to Striga in comparison with the conventional sources as standard checks. We evaluated 64 sorghum genotypes consisting of wild relatives, landraces, improved varieties, and fourth filial generation (F4) progenies in both a field trial and a pot trial. Data were collected for days to 50% flowering (DTF), dry panicle weight (DPW, g), plant height (PH, cm), yield (YLD, t ha-1), 100-grain weight (HGW, g), overall disease score (ODS), overall pest score (OPS), area under Striga number progress curve (ASNPC), maximum above-ground Striga (NSmax), and number of Striga-forming capsules (NSFC) at relevant stages. Genetic diversity and hybridity confirmation was determined using Diversity Arrays Technology sequencing (DArT-seq). Residual heterosis for HGW and NSmax was calculated as the percent increase or decrease in performance of F4 crossover midparent (MP). The top 10 best yielding genotypes were predominantly F4 crosses in both experiments, all of which yielded better than resistant checks, except FRAMIDA in the field trial and HAKIKA in the pot trial. Five F4 progenies (ICSVIII IN × E36-1, LANDIWHITE × B35, B35 × E36-1, F6YQ212 × B35, and ICSVIII IN × LODOKA) recorded some of the highest HGW in both trials revealing their stability in good performance. Three genotypes (F6YQ212, GBK045827, and F6YQ212xB35) and one check (SRN39) were among the most resistant to Striga in both trials. SNPs generated from DArT-seq grouped the genotypes into three major clusters, with all resistant checks grouping in the same cluster except N13. We identified more resistant and high-yielding genotypes than the conventional checks, especially among the F4 crosses, which should be promoted for adoption by farmers. Future studies will need to look for more diverse sources of Striga resistance and pyramid different mechanisms of resistance into farmer-preferred varieties to enhance the durability of Striga resistance in the fields of farmers.

3.
J Agric Food Chem ; 63(1): 335-42, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25418792

ABSTRACT

Furanoterpenoid accumulation in response to microbial attack in rotting sweetpotatoes has long been linked to deaths and lung edema of cattle in the world. However, it is not known whether furanoterpenoid ipomeamarone accumulates in the healthy-looking parts of infected sweetpotato storage roots. This is critical for effective utilization as animal feed and assessment of the potential negative impact on human health. Therefore, we first identified the fungus from infected sweetpotatoes as a Rhizopus stolonifer strain and then used it to infect healthy sweetpotato storage roots for characterization of furanoterpenoid content. Ipomeamarone and its precursor, dehydroipomeamarone, were identified through spectroscopic analyses, and detected in all samples and controls at varying concentrations. Ipomeamarone concentration was at toxic levels in healthy-looking parts of some samples. Our study provides fundamental information on furanoterpenoids in relation to high levels reported that could subsequently affect cattle on consumption and high ipomeamarone levels in healthy-looking parts.


Subject(s)
Animal Feed/analysis , Food Contamination/analysis , Ipomoea batatas/chemistry , Ipomoea batatas/microbiology , Plant Diseases/microbiology , Rhizopus/physiology , Sesquiterpenes/analysis , Animal Feed/microbiology , Animals , Cattle , Humans , Ipomoea batatas/metabolism , Plant Tubers/chemistry , Plant Tubers/microbiology , Sesquiterpenes/metabolism , Sesquiterpenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...