Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Neurosci ; 43(3): 501-521, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36639889

ABSTRACT

The most common genetic risk factor for Parkinson's disease (PD) is heterozygous mutations GBA1, which encodes for the lysosomal enzyme, glucocerebrosidase. Reduced glucocerebrosidase activity associates with an accumulation of abnormal α-synuclein (α-syn) called Lewy pathology, which characterizes PD. PD patients heterozygous for the neuronotypic GBA1L444P mutation (GBA1+/L444P) have a 5.6-fold increased risk of cognitive impairments. In this study, we used GBA1+/L444P mice of either sex to determine its effects on lipid metabolism, expression of synaptic proteins, behavior, and α-syn inclusion formation. At 3 months of age, GBA1+/L444P mice demonstrated impaired contextual fear conditioning, and increased motor activity. Hippocampal levels of vGLUT1 were selectively reduced in GBA1+/L444P mice. We show, using mass spectrometry, that GBA1L444P expression increased levels of glucosylsphingosine, but not glucosylceramide, in the brains and serum of GBA1+/L444P mice. Templated induction of α-syn pathology in mice showed an increase in α-syn inclusion formation in the hippocampus of GBA1+/L444P mice compared with GBA1+/+ mice, but not in the cortex, or substantia nigra pars compacta. Pathologic α-syn reduced SNc dopamine neurons by 50% in both GBA1+/+ and GBA1+/L444P mice. Treatment with a GlcCer synthase inhibitor did not affect abundance of α-syn inclusions in the hippocampus or rescue dopamine neuron loss. Overall, these data suggest the importance of evaluating the contribution of elevated glucosylsphingosine to PD phenotypes. Further, our data suggest that expression of neuronotypic GBA1L444P may cause defects in the hippocampus, which may be a mechanism by which cognitive decline is more prevalent in individuals with GBA1-PD.SIGNIFICANCE STATEMENT Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are both pathologically characterized by abnormal α-synuclein (α-syn). Mutant GBA1 is a risk factor for both PD and DLB. Our data show the expression of neuronotypic GBA1L444P impairs behaviors related to hippocampal function, reduces expression of a hippocampal excitatory synaptic protein, and that the hippocampus is more susceptible to α-syn inclusion formation. Further, our data strengthen support for the importance of evaluating the contribution of glucosylsphingosine to PD phenotypes. These outcomes suggest potential mechanisms by which GBA1L444P contributes to the cognitive symptoms clinically observed in PD and DLB. Our findings also highlight the importance of glucosylsphingosine as a relevant biomarker for future therapeutics.


Subject(s)
Glucosylceramidase , Parkinson Disease , Synucleinopathies , alpha-Synuclein , Animals , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Hippocampus/metabolism , Mutation/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Synucleinopathies/pathology
2.
Antiviral Res ; 139: 161-170, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27889530

ABSTRACT

DESIGN: The HIV latent CD4+ T cell reservoir is broadly recognized as a barrier to HIV cure. Induction of HIV expression using protein kinase C (PKC) agonists is one approach under investigation for reactivation of latently infected CD4+ T cells (Beans et al., 2013; Abreu et al., 2014; Jiang et al., 2014; Jiang and Dandekar, 2015). We proposed that an increased understanding of the molecular mechanisms of action of PKC agonists was necessary to inform on biological signaling and pharmacodynamic biomarkers. RNA sequencing (RNA Seq) was applied to identify genes and pathways modulated by PKC agonists. METHODS: Human CD4+ T cells were treated ex vivo with Phorbol 12-myristate 13-acetate, prostatin or ingenol-3-angelate. At 3 h and 24 h post-treatment, cells were harvested and RNA-Seq was performed on RNA isolated from cell lysates. The genes differentially expressed across the PKC agonists were validated by quantitative RT-PCR (qPCR). A subset of genes was evaluated for their role in HIV reactivation using siRNA and CRISPR approaches in the Jurkat latency cell model. RESULTS: Treatment of primary human CD4+ T cells with PKC agonists resulted in alterations in gene expression. qPCR of RNA Seq data confirmed upregulation of 24 genes, including CD69, Egr1, Egr2, Egr3, CSF2, DUSP5, and NR4A1. Gene knockdown of Egr1 and Egr3 resulted in reduced expression and decreased HIV reactivation in response to PKC agonist treatment, indicating a potential role for Egr family members in latency reversal. CONCLUSION: Overall, our results offer new insights into the mechanism of action of PKC agonists, biomarkers of pathway engagement, and the potential role of EGR family in HIV reactivation.


Subject(s)
HIV-1/physiology , Protein Kinase C/metabolism , Virus Activation/drug effects , Virus Latency/drug effects , Biomarkers , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Diterpenes/chemistry , Diterpenes/pharmacology , Drug Agonism , Early Growth Response Protein 1/genetics , Early Growth Response Protein 3/genetics , Gene Expression , HIV Infections/virology , Humans , Jurkat Cells , Male , Phorbols/pharmacology , Sequence Analysis, RNA
3.
Bioorg Med Chem Lett ; 22(23): 7207-13, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23084906

ABSTRACT

A series of macrocyclic compounds containing a cyclic constraint in the P2-P4 linker region have been discovered and shown to exhibit excellent HCV NS3/4a genotype 3a and genotype 1b R155K, A156T, A156V, and D168V mutant activity while maintaining high rat liver exposure. The effect of the constraint is most dramatic against gt 1b A156 mutants where ~20-fold improvements in potency are achieved by introduction of a variety of ring systems into the P2-P4 linker.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Hepacivirus/enzymology , Macrocyclic Compounds/chemistry , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Binding Sites , Carrier Proteins/metabolism , Catalytic Domain , Cyclization , Genotype , Half-Life , Hepacivirus/genetics , Intracellular Signaling Peptides and Proteins , Kinetics , Liver/metabolism , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Molecular Docking Simulation , Mutation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
4.
Bioorg Med Chem Lett ; 22(23): 7201-6, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23021993

ABSTRACT

A series of macrocyclic compounds containing 2-substituted-quinoline moieties have been discovered and shown to exhibit excellent HCV NS3/4a genotype 3a and genotype 1b R155K mutant activity while maintaining the high rat liver exposure. Cyclization of the 2-substituted quinoline substituent led to a series of tricyclic P2 compounds which also display superb gt3a potency.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Hepacivirus/enzymology , Macrocyclic Compounds/chemistry , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Carrier Proteins/metabolism , Cyclization , Genotype , Half-Life , Hepacivirus/genetics , Intracellular Signaling Peptides and Proteins , Kinetics , Liver/metabolism , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacokinetics , Quinolines/chemistry , Rats , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
5.
Bioorg Med Chem Lett ; 21(24): 7344-50, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22071300

ABSTRACT

Next generation NNRTIs are sought which possess both broad spectrum antiviral activity against key mutant strains and a high genetic barrier to the selection of new mutant viral strains. Pyridones were evaluated as an acyclic conformational constraint to replace the aryl ether core of MK-4965 (1) and the more rigid indazole constraint of MK-6186 (2). The resulting pyridone compounds are potent inhibitors of HIV RT and have antiviral activity in cell culture that is superior to other next generation NNRTI's.


Subject(s)
HIV Reverse Transcriptase/antagonists & inhibitors , Pyridones/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Binding Sites , Cell Line , Computer Simulation , Drug Design , Enzyme Activation/drug effects , HIV/enzymology , HIV Reverse Transcriptase/metabolism , Humans , Protein Structure, Tertiary , Pyrazoles/chemistry , Pyridines/chemistry , Pyridones/chemical synthesis , Pyridones/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology
6.
J Med Chem ; 54(22): 7920-33, 2011 Nov 24.
Article in English | MEDLINE | ID: mdl-21985673

ABSTRACT

Highly active antiretroviral therapy (HAART) significantly reduces human immunodeficiency virus (HIV) viral load and has led to a dramatic decrease in acquired immunodeficiency syndrome (AIDS) related mortality. Despite this success, there remains a critical need for new HIV therapies to address the emergence of drug resistant viral strains. Next generation NNRTIs are sought that are effective against these mutant forms of the HIV virus. The bound conformations of our lead inhibitors, MK-1107 (1) and MK-4965 (2), were divergent about the oxymethylene linker, and each of these conformations was rigidified using two isomeric cyclic constraints. The constraint derived from the bioactive conformation of 2provided novel, highly potent NNRTIs that possess broad spectrum antiviral activity and good pharmacokinetic profiles. Systematic SAR led to the identification of indazole as the optimal conformational constraint to provide MK-6186 (3) and MK-7445 (6). Despite their reduced flexibility, these compounds had potency comparable to that of the corresponding acyclic ethers in both recombinant enzyme and cell based assays against both the wild-type and the clinically relevant mutant strains.


Subject(s)
Anti-HIV Agents/chemical synthesis , Imidazoles/chemical synthesis , Indazoles/chemical synthesis , Pyrazoles/chemical synthesis , Reverse Transcriptase Inhibitors/chemical synthesis , Triazoles/chemical synthesis , Animals , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/pharmacology , Cells, Cultured , Dogs , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/genetics , HIV-1/isolation & purification , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Indazoles/pharmacokinetics , Indazoles/pharmacology , Models, Molecular , Molecular Conformation , Mutation , Nitriles/chemical synthesis , Nitriles/pharmacokinetics , Nitriles/pharmacology , Nitrobenzenes/chemical synthesis , Nitrobenzenes/pharmacokinetics , Nitrobenzenes/pharmacology , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship , Thermodynamics , Triazoles/pharmacokinetics , Triazoles/pharmacology
7.
ACS Med Chem Lett ; 2(3): 207-12, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-24900304

ABSTRACT

The discovery of MK-1220 is reported along with the development of a series of HCV NS3/4A protease inhibitors containing a P2 to P4 macrocyclic constraint with improved preclinical pharmacokinetics. Optimization of the P2 heterocycle substitution pattern as well as the P3 amino acid led to compounds with greatly improved plasma exposure following oral dosing in both rats and dogs while maintaining excellent enzyme potency and cellular activity. These studies led to the identification of MK-1220.

8.
Bioorg Med Chem Lett ; 20(15): 4328-32, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20609585

ABSTRACT

Biaryl ethers were recently reported as potent NNRTIs. Herein, we disclose a detailed effort to modify the previously reported compound 1. We have designed and synthesized a series of novel pyrazole derivatives as a surrogate for pyrazolopyridine motif that were potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells.


Subject(s)
Anti-HIV Agents/chemistry , Ethers/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , Pyrazoles/chemistry , Pyridines/chemistry , Reverse Transcriptase Inhibitors/chemistry , Allosteric Regulation , Animals , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacokinetics , Dogs , Ethers/chemical synthesis , Ethers/pharmacokinetics , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Humans , Mutation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacokinetics , Structure-Activity Relationship
9.
J Med Chem ; 53(6): 2443-63, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20163176

ABSTRACT

A new class of HCV NS3/4a protease inhibitors which contain a P2 to P4 macrocyclic constraint was designed using a molecular-modeling derived strategy. Exploration of the P2 heterocyclic region, the P2 to P4 linker, and the P1 side chain of this class of compounds via a modular synthetic strategy allowed for the optimization of enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 35b (vaniprevir, MK-7009), which is active against both the genotype 1 and genotype 2 NS3/4a protease enzymes and has good plasma exposure and excellent liver exposure in multiple species.


Subject(s)
Hepacivirus/enzymology , Indoles/pharmacology , Serine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Area Under Curve , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Cyclopropanes , Dogs , Drug Discovery , Drug Evaluation, Preclinical , Indoles/chemistry , Indoles/pharmacokinetics , Inhibitory Concentration 50 , Intracellular Signaling Peptides and Proteins , Isoindoles , Lactams, Macrocyclic , Leucine/analogs & derivatives , Liver/metabolism , Macaca mulatta , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacokinetics , Macrocyclic Compounds/pharmacology , Metabolic Clearance Rate , Models, Chemical , Molecular Structure , Pan troglodytes , Proline/analogs & derivatives , Rats , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Sulfonamides , Viral Nonstructural Proteins/metabolism , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism
10.
J Med Chem ; 52(22): 7163-9, 2009 Nov 26.
Article in English | MEDLINE | ID: mdl-19883100

ABSTRACT

Biaryl ethers were recently reported as potent NNRTIs. Herein we disclose a detailed SAR study that led to the biaryl ether 6. This compound possessed excellent potency against WT RT and key clinically observed RT mutants and had an excellent pharmacokinetic profile in rats, dogs, and rhesus macaques. The compound also exhibited a clean safety profile in preclinical safety studies.


Subject(s)
Ethers/chemistry , Ethers/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/genetics , HIV-1/drug effects , HIV-1/genetics , Mutation , Animals , Cell Line , Dogs , Ethers/chemical synthesis , Ethers/pharmacokinetics , HIV-1/enzymology , Humans , Macaca mulatta , Nucleosides/chemistry , Rats , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 19(17): 5119-23, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19631528

ABSTRACT

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are key elements of multidrug regimens, called HAART (Highly Active Antiretroviral Therapy), that are used to treat HIV-1 infections. Elucidation of the structure-activity relationships of the thiocarbamate moiety of the previous published lead compound 2 provided a series of novel tetrahydroquinoline derivatives as potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells. The SAR optimization, mutation profiles, preparation of compounds, and pharmacokinetic profile of compounds are described.


Subject(s)
Anti-HIV Agents/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , Quinolines/chemistry , Reverse Transcriptase Inhibitors/chemistry , Allosteric Site , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Binding Sites , Crystallography, X-Ray , HIV Reverse Transcriptase/metabolism , Molecular Conformation , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/metabolism , Quinolines/chemical synthesis , Quinolines/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship , Thiocarbamates/chemistry , Thiocarbamates/pharmacology
12.
J Med Chem ; 51(20): 6503-11, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18826204

ABSTRACT

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been shown to be a key component of highly active antiretroviral therapy (HAART). The use of NNRTIs has become part of standard combination antiviral therapies producing clinical outcomes with efficacy comparable to other antiviral regimens. There is, however, a critical issue with the emergence of clinical resistance, and a need has arisen for novel NNRTIs with a broad spectrum of activity against key HIV-1 RT mutations. Using a combination of traditional medicinal chemistry/SAR analyses, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad spectrum antiviral activity and good pharmacokinetic profiles. Further refinement of key compounds in this series to optimize physical properties and pharmacokinetics has resulted in the identification of 8e (MK-4965), which has high levels of potency against wild-type and key mutant viruses, excellent oral bioavailability and overall pharmacokinetics, and a clean ancillary profile.


Subject(s)
HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , HIV-1/enzymology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Administration, Oral , Animals , Bromine Compounds/chemical synthesis , Bromine Compounds/chemistry , Crystallography, X-Ray , Drug Evaluation, Preclinical , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , Models, Molecular , Molecular Structure , Mutation/genetics , Nucleosides/chemistry , Nucleosides/pharmacology , Pyrazoles/chemistry , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Inhibitors/chemistry , Structure-Activity Relationship
13.
J Med Chem ; 51(13): 3946-52, 2008 Jul 10.
Article in English | MEDLINE | ID: mdl-18553956

ABSTRACT

Selective bradykinin (BK) B 1 receptor antagonists could be novel therapeutic agents for the treatment of pain and inflammation. Elucidation of the structure activity relationships of the structurally novel HTS lead compound 1 provided potent hBK B 1 receptor antagonists with excellent receptor occupancy in the CNS of hBK B 1 transgenic rats.


Subject(s)
Amines/chemistry , Benzophenones/chemistry , Benzophenones/pharmacology , Bradykinin B1 Receptor Antagonists , Animals , Benzophenones/chemical synthesis , Cell Line , Dogs , Humans , Molecular Structure , Rats , Receptor, Bradykinin B1/metabolism , Structure-Activity Relationship
15.
J Am Chem Soc ; 130(14): 4607-9, 2008 Apr 09.
Article in English | MEDLINE | ID: mdl-18338894

ABSTRACT

Molecular modeling of inhibitor bound full length HCV NS3/4A protease structures proved to be a valuable tool in the design of a new series of potent NS3 protease inhibitors. Optimization of initial compounds provided 25a. The in vitro activity and selectivity as well as the rat pharmacokinetic profile of 25a compare favorably with the data for other NS3/4A protease inhibitors currently in clinical development for the treatment of HCV.


Subject(s)
Hepacivirus/enzymology , Macrocyclic Compounds/chemistry , Serine Proteinase Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Macrocyclic Compounds/pharmacology , Models, Molecular , Rats , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacokinetics , Serine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry
16.
Bioorg Med Chem Lett ; 18(2): 716-20, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18061443

ABSTRACT

Antagonism of the bradykinin B(1) receptor represents a potential treatment for chronic pain and inflammation. Novel antagonists incorporating alpha-hydroxy amides were designed that display low-nanomolar affinity for the human bradykinin B(1) receptor and good bioavailability in the rat and dog. In addition, these functionally active compounds show high passive permeability and low susceptibility to phosphoglycoprotein mediated efflux, predictive of good CNS exposure.


Subject(s)
Amides/pharmacology , Bradykinin B1 Receptor Antagonists , Amides/chemistry , Amides/pharmacokinetics , Animals , Biological Availability , Blood-Brain Barrier , Cytochrome P-450 Enzyme Inhibitors , Dogs , Half-Life , Humans , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 17(11): 3006-9, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17428657

ABSTRACT

Selective bradykinin (BK) B(1) receptor antagonists have been shown to be antinociceptive in animal models and could be novel therapeutic agents for the treatment of pain and inflammation. Elucidation of the structure-activity relationships of the biphenyl moiety of the lead compound 1 provided a potent new structural class of BK B(1) receptor antagonists.


Subject(s)
Analgesics/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Bradykinin B1 Receptor Antagonists , Cyclohexanes/chemistry , Hydrocarbons, Fluorinated/chemistry , Pyridines/chemistry , Analgesics/chemical synthesis , Analgesics/pharmacology , Animals , Animals, Genetically Modified , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclohexanes/chemical synthesis , Cyclohexanes/pharmacology , Humans , Hydrocarbons, Fluorinated/chemical synthesis , Hydrocarbons, Fluorinated/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Rats , Receptor, Bradykinin B1/genetics , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 16(10): 2595-8, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16527483

ABSTRACT

High-throughput screening of the Merck sample collection identified benzodiazepinone tetralin-spirohydantoin 1 as a CGRP receptor antagonist with micromolar activity. Comparing the structure of 1 with those of earlier peptide-based antagonists such as BIBN 4096 BS, a key hydrogen bond donor-acceptor pharmacophore was hypothesized. Subsequent structure activity studies supported this hypothesis and led to benzodiazepinone piperidinyldihydroquinazolinone 7, CGRP receptor K(i)=44nM and IC(50)=38nM. Compound 7 was orally bioavailabile in rats and is a lead in the development of orally bioavailable CGRP antagonists for the treatment of migraine.


Subject(s)
Benzodiazepinones/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists , Animals , Benzodiazepinones/pharmacokinetics , Biological Availability , Cell Line , Humans , Hydrogen Bonding , Rats , Structure-Activity Relationship
19.
J Med Chem ; 49(4): 1231-4, 2006 Feb 23.
Article in English | MEDLINE | ID: mdl-16480259
SELECTION OF CITATIONS
SEARCH DETAIL
...