Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 178: 296-306, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38417646

ABSTRACT

Manipulation of the lactate metabolism is an efficient way for cancer treatment given its involvement in cancer development, metastasis, and immune escape. However, most of the inhibitors of lactate transport carriers suffer from poor specificity. Herein, we use the CRISPR/Cas9 system to precisely downregulate the monocarboxylate carrier 1 (MCT1) expression. To avoid the self-repairing during the gene editing process, a dual-Cas9 ribonucleoproteins (duRNPs) system is generated using the biological fermentation method and delivered into cells by the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, enabling precise removal of a specific DNA fragment from the genome. For efficient cancer therapy, a specific glucose transporter 1 inhibitor (BAY-876) is co-delivered with the duRNPs, forming BAY/duRNPs@ZIF-8 nanoparticle. ZIF-8 nanoparticles can deliver the duRNPs into cells within 1 h, which efficiently downregulates the MCT1 expression, and prohibits lactate influx. Through simultaneous inhibition of the lactate and glucose influx, BAY/duRNPs@ZIF-8 prohibits ATP generation, arrests cell cycle, inhibits cell proliferation, and finally induces cellular apoptosis both in vitro and in vivo. Consequently, we demonstrate that the biologically produced duRNPs delivered into cells by the nonviral ZIF-8 carrier have expanded the CRISPR/Cas gene editing toolbox and elevated the gene editing efficiency, which will promote biological studies and clinical applications. STATEMENT OF SIGNIFICANCE: The CRISPR/Cas9 system, widely used as an efficient gene editing tool, faces a challenge due to cells' ability to self-repair. To address this issue, a strategy involving dual-cutting of the genome DNA has been designed and implemented. This strategy utilizes biologically produced dual-ribonucleoproteins delivered by a metal-organic framework. The effectiveness of this dual-cut CRISPR-Cas9 system has been demonstrated through a therapeutic approach targeting the simultaneous inhibition of lactate and glucose influx in cancer cells. The utilization of the dual-cut gene editing strategy has provided valuable insights into gene editing and expanded the toolbox of the CRISPR/Cas-based gene editing system. It has the potential to enable more efficient and precise manipulation of specific protein expression in the future.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Gene Editing/methods , CRISPR-Cas Systems/genetics , DNA , Ribonucleoproteins/genetics , Lactates , Glucose , Neoplasms/genetics , Neoplasms/therapy
2.
Chemistry ; 30(5): e202303502, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37915302

ABSTRACT

NIR-II fluorescence imaging-guided photothermal therapy (PTT) has been widely investigated due to its great application potential in tumor theranostics. PTT is an effective and non-invasive tumor treatment method that can adapt to tumor hypoxia; nevertheless, simple and effective strategies are still desired to develop new materials with excellent PTT properties to meet clinical requirements. In this work, we developed a bromine-substitution strategy to enhance the PTT of A-D-A'-D-A π-conjugated molecules. The experimental results reveal that bromine substitution can notably enhance the absorptivity (ϵ) and photothermal conversion efficiency (PCE) of the π-conjugated molecules, resulting in the brominated molecules generating two times more heat (ϵ808 nm ×PCE) than their unsubstituted counterpart. We disclose that the enhanced photothermal properties of bromine-substituted π-conjugated molecules are a combined outcome of the heavy-atom effect, enhanced ICT effect, and more intense bromine-mediate intermolecular π-π stacking. Finally, the NIR-II tumor imaging capability and efficient PTT tumor ablation of the brominated π-conjugated materials demonstrate that bromine substitution is a promising strategy for developing future high-performance NIR-II imaging-guided PTT agents.


Subject(s)
Nanoparticles , Neoplasms , Humans , Phototherapy , Bromine/therapeutic use , Neoplasms/therapy , Neoplasms/drug therapy , Photothermal Therapy , Cell Line, Tumor , Theranostic Nanomedicine/methods
3.
Acta Biomater ; 170: 330-343, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37607616

ABSTRACT

Metal-organic frameworks (MOFs) with periodically arranged porphyrinic linkers avoiding the self-quenching issue of porphyrins in photodynamic therapy (PDT) have been widely applied. However, the porphyrinic MOFs still face challenges of poor stability under physiological conditions and limited photodynamic efficiency by the hypoxia condition of tumors. Herein, we fabricate the MOF@MOF structure with a protective MOF shell to improve the stability and relieve the hypoxia condition of tumors for sensitized PDT. Under protection of the MOF shell, the MOF@MOF structure can keep intact for 96 h under physiological conditions. Consequently, the tumoral accumulation efficiency is two folds of the MOF core. Furthermore, the MOF shell decomposes under acidic environment, and the loaded inhibitor of mitochondria pyruvate carrier (7-amino carboxycoumarins-2, 7ACC2) will be released. 7ACC2 inhibits the mitochondrial pyruvate influx and simultaneously blocks glucose and lactate from fueling the mitochondrial respiration, thereupon relieving the hypoxia condition of tumors. Under a 5-min laser irradiation, the 7ACC2 carrying MOF@MOF nanoplatforms induced doubled cellular apoptosis and reduced 70% of the tumor growth compared with the cargo-free MOF@MOF. In summary, the design of this stable and hypoxia self-relievable MOF@MOF nanoplatform will enlighten the future development of MOF-based nanomedicines and PDT. STATEMENT OF SIGNIFICANCE: Though widely used for photodynamic therapy (PDT) in previous studies, porphyrinic metal-organic frameworks (MOFs) still face challenges in poor stability under physiological conditions and limited photodynamic efficiency due to the hypoxia condition of tumors. In order to solve these problems, (1) we develop the MOF@MOF strategy to improve the physiological stability; (2) an inhibitor of mitochondria pyruvate carrier, 7-amino carboxycoumarins-2 (7ACC2), is loaded to inhibit the mitochondrial pyruvate influx and simultaneously block glucose and lactate from fueling the mitochondrial respiration, thereupon relieving the hypoxia condition of tumors. In comparison with previous studies, our strategy simultaneously improves stability and overcomes the limited PDT efficiency in the hypoxia tumor tissue, which will enlighten the future development of MOF-based nanomedicines and PDT.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemistry , Monocarboxylic Acid Transporters , Neoplasms/drug therapy , Hypoxia , Respiration , Mitochondria , Lactates , Glucose , Pyruvates , Cell Line, Tumor , Nanoparticles/chemistry
4.
ACS Appl Mater Interfaces ; 15(13): 16482-16491, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36972557

ABSTRACT

Chemodynamic therapy (CDT) relies on the transformation of intracellular hydrogen peroxide (H2O2) to hydroxyl radicals (·OH) with higher toxicity under the catalysis of Fenton/Fenton-like reagents, which amplifies the oxidative stress and induces significant cellular apoptosis. However, the CDT efficacy is generally limited by the overexpressed GSH and insufficient endogenous H2O2 in tumors. Co-delivery of Cu2+ and glucose oxidase (GOD) can lead to a Cu2+/Cu+ circulation to realize GSH depletion and amplify the Fenton-like reaction. pH-responsive metal-organic frameworks (MOFs) are the optical choice to deliver Fenton/Fenton-like ions to tumors. However, considering that the aqueous condition is requisite for GOD encapsulation, it is challenging to abundantly dope Cu2+ in ZIF-8 MOF nanoparticles in aqueous conditions due to the ease of precipitation and enlarged crystal size. In this work, a robust one-pot biomimetic mineralization method using excessive ligand precursors in aqueous conditions is developed to synthesize GOD@Cu-ZIF-8. Copper ions abundantly doped to the GOD@Cu-ZIF-8 can eliminate GSH to produce Cu+, which is further proceeded to the Fenton-like reaction in the presence of GOD-catalyzed H2O2. Through breaking the tumor microenvironment homeostasis and producing an enhanced CDT effect, the promising antitumor capability of GOD@Cu-ZIF-8 was evidenced by the experiments both in vitro and in vivo.


Subject(s)
Nanoparticles , Neoplasms , Humans , Glucose Oxidase , Hydrogen Peroxide , Homeostasis , Oxidative Stress , Cell Line, Tumor , Tumor Microenvironment , Glutathione
5.
Adv Sci (Weinh) ; 8(19): e2101467, 2021 10.
Article in English | MEDLINE | ID: mdl-34363341

ABSTRACT

Recent investigations reveal that lactate is not a waste product but a major energy source for cells, especially in the mitochondria, which can support cellular survival under glucose shortage. Accordingly, the new understanding of lactate prompts to target it together with glucose to pursue a more efficient cancer starvation therapy. Herein, zeolitic imidazolate framework-8 (ZIF-8) nanoplatforms are used to co-deliver α-cyano-4-hydroxycinnamate (CHC) and glucose oxidase (GOx) and fulfill the task of simultaneous depriving of lactate and glucose, resulting in a new nanomedicine CHC/GOx@ZIF-8. The synthesis conditions are carefully optimized in order to yield monodisperse and uniform nanomedicines, which will ensure reliable and steady therapeutic properties. Compared with the strategies aiming at a single carbon source, improved starvation therapy efficacy is observed. Besides, more than boosting the energy shortage, CHC/GOx@ZIF-8 can block the lactate-fueled respiration and relieve solid tumor hypoxia, which will enhance GOx catalysis activity, depleting extra glucose, and producing more cytotoxic H2 O2 . By the synergistically enhanced anti-tumor effect, both in vitro and in vivo cancer-killing efficacies of CHC/GOx@ZIF-8 show twice enhancements than the GOx mediated therapy. The results demonstrate that the dual-depriving of lactate and glucose is a more advanced strategy for strengthening cancer starvation therapy.


Subject(s)
Coumaric Acids/metabolism , Glucose Oxidase/metabolism , Glucose/metabolism , Imidazoles/metabolism , Lactic Acid/metabolism , Metal-Organic Frameworks/metabolism , Neoplasms/metabolism , Neoplasms/therapy , Animals , Cell Survival , Mice , Nanomedicine/methods , Nanoparticles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...