Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Bioact Mater ; 38: 422-437, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38770427

ABSTRACT

Delayed bone-healing of senile osteoporotic fractures remains a clinical challenge due to the alterations caused by aging in bone and immune systems. The novel biomaterials that address the deficiencies in both skeletal cells and immune systems are required to effectively treat the bone injuries of older patients. Zinc (Zn) has shown promise as a biodegradable material for use in orthopedic implants. To address the bone-healing deficiencies in elderly patients with bone injuries, we developed a biodegradable Zn-based alloy (Zn-2Cu-0.5Zr) with enhanced mechanical properties, including a yield strength of 198.7 MPa and ultimate tensile strength of 217.6 MPa, surpassing those of pure Zn and Zn-2Cu alloys. Cytotoxicity tests conducted on bone marrow mesenchymal stem cells (BMSCs) and MC3T3-E1 cells demonstrated that the extracts from Zn-2Cu-0.5Zr alloy exhibited no observable cytotoxic effects. Furthermore, the extracts of Zn-2Cu-0.5Zr alloy exhibited significant anti-inflammatory effects through regulation of inflammation-related cytokine production and modulation of macrophage polarization. The improved immune-osteo microenvironment subsequently contributed to osteogenic differentiation of BMSCs. The potential therapeutic application of Zn-2Cu-0.5Zr in senile osteoporotic fracture was tested using a rat model of age-related osteoporosis. The Zn-2Cu-0.5Zr alloy met the requirements for load-bearing applications and accelerated the healing process in a tibial fracture in aged rats. The imaging and histological analyses showed that it could accelerate the bone-repair process and promote the fracture healing in senile osteoporotic rats. These findings suggest that the novel Zn-2Cu-0.5Zr alloy holds potential for influencing the immunomodulatory function of macrophages and facilitating bone repair in elderly individuals with osteoporosis.

2.
J Funct Biomater ; 15(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667564

ABSTRACT

This Special Issue, "Functional Biomaterials and Digital Technologies in Dentistry: From Bench to Bedside", highlights the integration of advanced materials science and digital technologies in dental and maxillofacial applications [...].

3.
Mater Today Bio ; 25: 100932, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38298560

ABSTRACT

Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.

4.
Biomater Adv ; 153: 213536, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37418934

ABSTRACT

Zn and its alloys are receiving increasing interest for biodegradable orthopedic implant applications owing to their moderate corrosion rate and the potential functionality of Zn2+. However, their non-uniform corrosion behavior and insufficient osteogenic, anti-inflammatory, and antibacterial properties do not meet the comprehensive requirements of orthopedic implants in clinical use. Herein, an aspirin (an acetylsalicylic acid, ASA, 10, 50, 100, and 500 mg/L)-loaded carboxymethyl chitosan (CMC)/gelatin (Gel)-Zn2+ organometallic hydrogel composite coating (CMC/Gel&Zn2+/ASA) was fabricated on a Zn surface via an alternating dip-coating method, aiming to obtain a material with these comprehensive properties improved. The organometallic hydrogel composite coatings, ca. 12-16 µm in thickness, showed compact, homogeneous, and micro-bulge structured surface morphology. The coatings protected well the Zn substrate from pitting/localized corrosion and contained the release of the bioactive components, Zn2+ and ASA, in a sustained and stable manner in long-term in vitro immersions in Hank's solution. The coated Zn showed greater ability to promote proliferation and osteogenic differentiation for MC3T3-E1 osteoblasts, and better anti-inflammatory capacity when compared with uncoated Zn. Additionally, this coating displayed excellent antibacterial activity against both Escherichia coli (>99 % antibacterial rate) and Staphylococcus aureus (>98 % antibacterial rate). Such appealing properties can be attributed to the compositional nature of the coating, namely the sustained release of Zn2+ and ASA, as well as the surface physiochemical properties because of its unique microstructure. This organometallic hydrogel composite coating can be considered a promising option for the surface modification of biodegradable Zn-based orthopedic implants among others.


Subject(s)
Hydrogels , Osteogenesis , Corrosion , Hydrogels/pharmacology , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Cell Line , Absorbable Implants , Aspirin , Anti-Inflammatory Agents , Anti-Bacterial Agents/pharmacology , Escherichia coli , Gelatin/pharmacology , Zinc/pharmacology
5.
Acta Biomater ; 166: 685-704, 2023 08.
Article in English | MEDLINE | ID: mdl-37196904

ABSTRACT

Zn and its alloys are increasingly under consideration for biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for osteoporotic bone fracture healing, due to their uneven degradation mode, burst release of zinc ions, and insufficient osteo-promotion and osteo-resorption regulating properties. In this study, a type of Zn2+ coordinated zoledronic acid (ZA) and 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) metal-organic hybrid nanostick was synthesized, which was further mixed into zinc phosphate (ZnP) solution to mediate the deposition and growth of ZnP to form a well-integrated micro-patterned metal-organic/inorganic hybrid coating on Zn. The coating protected noticeably the Zn substrate from corrosion, in particular reducing its localized occurrence as well as suppressing its Zn2+ release. Moreover, the modified Zn was osteo-compatible and osteo-promotive and, more important, performed osteogenesis in vitro and in vivo of well-balanced pro-osteoblast and anti-osteoclast responses. Such favorable functionalities are related to the nature of its bioactive components, especially the bio-functional ZA and the Zn ions it contains, as well as its unique micro- and nano-scale structure. This strategy provides not only a new avenue for surface modification of biodegradable metals but also sheds light on advanced biomaterials for osteoporotic fracture and other applications. STATEMENT OF SIGNIFICANCE: Developing appropriate biodegradable metallic materials is of clinical relevance for osteoporosis fracture healing, whereas current strategies are short of good balance between the bone formation and resorption. Here, we designed a micropatterned metal-organic nanostick mediated zinc phosphate hybrid coating modified Zn biodegradable metal to fulfill such a balanced osteogenicity. The in vitro assays verified the coated Zn demonstrated outstanding pro-osteoblasts and anti-osteoclasts properties and the coated intramedullary nail promoted fracture healing well in an osteoporotic femur fracture rat model. Our strategy may offer not only a new avenue for surface modification of biodegradable metals but also shed light on better understanding of new advanced biomaterials for orthopedic application among others.


Subject(s)
Osteoporotic Fractures , Rats , Animals , Zoledronic Acid , Osteoporotic Fractures/drug therapy , Osteoporotic Fractures/surgery , Biocompatible Materials/chemistry , Phosphates , Alloys/pharmacology , Alloys/chemistry , Zinc/pharmacology , Absorbable Implants , Corrosion , Materials Testing
6.
Biomater Adv ; 136: 212792, 2022 May.
Article in English | MEDLINE | ID: mdl-35929323

ABSTRACT

Zinc is becoming one of the leading candidate materials for biodegradable orthopedic implants owing to its attractive properties in terms of degradation behavior and mechanical properties. However, the insufficient surface bio-activities postpone its clinical application. In this study, an organic-inorganic collagen entrapped calcium/zinc phosphates coating was constructed on Zn surface to lessen Zn2+ releasing rate and to leverage the surface osteogenic and angiogenic properties. Collagen molecules were immobilized onto Zn substrate and subsequently coordinated with calcium and zinc ions to promote the CaZnP inorganic phase growth, ensuing an intertwined collagen-CaZnP hybrid system. Consequently, the hybrid coating was highly coalesced and compact. Such high quality warranted the contained Zn2+ releasing in a tolerable rate favorable for cells viability. The collagen-CaZnP coated Zn showed remarkedly stronger osteogenicity as compared to the untreated Zn, ascertained by the MC3T3-E1 osteoblast cell proliferation and differentiation assays, such as alkaline phosphatase expression and calcium nodule formation results. In addition, this hybrid coating supported human umbilical vein endothelial cells (HUVECs) migration and tube formation. The enhanced osteogenic and angiogenic properties could be ascribed to the nature of collagen and calcium/zinc phosphate components, the hybrid micro/nano-structure as well as the ability of controlling the Zn2+ release of Zn substrate into a suitable concentration range. Our strategy provides a new avenue to surface modification of biodegradable metals for bone regenerative perspective.


Subject(s)
Osteogenesis , Zinc , Absorbable Implants , Calcium , Collagen/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Phosphates/pharmacology , Zinc/pharmacology
7.
Materials (Basel) ; 15(11)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35683285

ABSTRACT

High-purity magnesium (Mg) is a promising biodegradable metal for oral and maxillofacial implants. Appropriate surface roughness plays a critical role in the degradation behavior and the related cellular processes of biodegradable Mg-based metals. Nevertheless, the most optimized surface roughness has been questionable, especially for Mg-based oral and maxillofacial implants. Three representative scales of surface roughness were investigated in this study, including smooth (Sa < 0.5 µm), moderately rough (Sa between 1.0−2.0 µm), and rough (Sa > 2.0 µm). The results indicated that the degradation rate of the Mg specimen in the cell culture medium was significantly accelerated with increased surface roughness. Furthermore, an extract test revealed that Mg with different roughness did not induce an evident cytotoxic effect. Nonetheless, the smooth Mg surface had an adversely affected cell attachment. Therefore, the high-purity Mg with a moderately rough surface exhibited the most optimized balance between biodegradability and overall cytocompatibility.

8.
Front Chem ; 10: 860040, 2022.
Article in English | MEDLINE | ID: mdl-35734444

ABSTRACT

Zinc-based nanoparticles, nanoscale metal frameworks and metals have been considered as biocompatible materials for bone tissue engineering. Among them, zinc-based metals are recognized as promising biodegradable materials thanks to their moderate degradation rate ranging between magnesium and iron. Nonetheless, materials' biodegradability and the related biological response depend on the specific implant site. The present study evaluated the biodegradability, cytocompatibility, and hemocompatibility of a hot-extruded zinc-copper-iron (Zn-Cu-Fe) alloy as a potential biomaterial for craniomaxillofacial implants. Firstly, the effect of fetal bovine serum (FBS) on in vitro degradation behavior was evaluated. Furthermore, an extract test was used to evaluate the cytotoxicity of the alloy. Also, the hemocompatibility evaluation was carried out by a modified Chandler-Loop model. The results showed decreased degradation rates of the Zn-Cu-Fe alloy after incorporating FBS into the medium. Also, the alloy exhibited acceptable toxicity towards RAW264.7, HUVEC, and MC3T3-E1 cells. Regarding hemocompatibility, the alloy did not significantly alter erythrocyte, platelet, and leukocyte counts, while the coagulation and complement systems were activated. This study demonstrated the predictable in vitro degradation behavior, acceptable cytotoxicity, and appropriate hemocompatibility of Zn-Cu-Fe alloy; therefore, it might be a candidate biomaterial for craniomaxillofacial implants.

9.
Mater Sci Eng C Mater Biol Appl ; 130: 112430, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34702515

ABSTRACT

Biodegradable zinc (Zn) and Zn-based alloys have been recognized as promising biomaterials for biomedical implants. Sterilization is an essential step in handling Zn-based implants before their use in clinical practice and there are various sterilization methods are available. However, how these treatments influence the Zn-based biomaterials remains unknown and is of critical relevance. In this study, three commonly-applied standard sterilization methods, namely gamma irradiation, hydrogen peroxide gas plasma and steam autoclave, were used on pure Zn and Zn3Cu (wt%) alloy. The treated Zn and ZnCu alloy were investigated to compare the different influences of sterilizations on surface characteristics, transient and long-term degradation behavior and cytotoxicity of Zn and Zn alloy. Our results indicate that autoclaving brought about apparently a formation of inhomogeneous zinc oxide film whereas the other two methods produced no apparent alterations on the material surfaces. Consequently, the samples after autoclaving showed significantly faster degradation rates and more severe localized corrosion, especially for the ZnCu alloy, owing to the incomplete covering and unstable zinc oxide layer. Moreover, the autoclave-treated Zn and ZnCu alloy exhibited apparent cytotoxic effects towards fibroblasts, which may be due to the excessive Zn ion releasing and its local concentration exceeds the cellular tolerance capacity. In contrast, gamma irradiation and hydrogen peroxide gas plasma had no apparent adverse effects on the biodegradability and cytocompatibility of Zn and ZnCu alloy. Our findings may have significant implications regarding the selection of suitable sterilization methods for Zn-based implant materials among others.


Subject(s)
Absorbable Implants , Zinc , Alloys/pharmacology , Biocompatible Materials/pharmacology , Corrosion , Materials Testing , Sterilization
10.
Mater Sci Eng C Mater Biol Appl ; 119: 111594, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33321638

ABSTRACT

Zinc (Zn) and its alloys have been considered promising absorbable metals for medical implants. However, the dynamic interaction between Zn-based materials and human blood after implantation remains unclear. In this study, a modified Chandler-Loop system was applied to assess the blood compatibility and initial degradation behavior of a Zn-4.0Cu (wt%) alloy (Zn-4Cu) and Zn with human peripheral blood under circulation conditions. In this dynamic in vitro model, the Zn-4Cu and Zn showed sufficient blood compatibility. The numbers of erythrocytes, platelets, and leukocytes were not significantly altered, and appropriate activations of the coagulation and complement system were observed. Concerning initial degradation behavior, the product layers formed on the surfaces comprise a mixture of organic and inorganic compounds while the inorganic constituents decrease toward the outer surface. Considering the corrosion morphology and electrochemical behaviors, Zn-4Cu exhibited milder and more uniform degradation than Zn. Additionally, long-term degradation tests of 28 days in human peripheral blood, human serum, and Dulbecco's phosphate-buffered saline (DPBS) demonstrated that the Zn-4Cu showed relatively uniform degradation in blood and serum. On the contrary, in DPBS, severe localized corrosion appeared along the grain boundary of the secondary phase, which was likely attributed to the acceleration of galvanic corrosion. The Zn was found with localized corrosion impeded in the blood albeit with apparently developed deep pitting holes in the serum and DPBS.


Subject(s)
Alloys , Zinc , Absorbable Implants , Biocompatible Materials , Corrosion , Humans , Materials Testing
11.
Bioact Mater ; 6(4): 975-989, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33102940

ABSTRACT

Appropriately adapted comprehensive mechanical properties, degradation behavior and biocompatibility are prerequisites for the application of Zn-based biodegradable implants. In this study, hot-extruded Zn-0.5Cu-xFe (x = 0.1, 0.2 and 0.4 wt%) alloys were fabricated as candidates for biodegradable materials for guided bone regeneration (GBR) membranes. The hot-extrusion process and Cu alloying were expected mostly to enhance the mechanical properties, and the Fe alloying was added mainly for regulating the degradation. The microstructure, mechanical properties and in vitro degradation behavior were systematically investigated. The ZnCuFe alloys were composed of a Zn matrix and FeZn13 phase. With increasing Fe content, a higher FeZn13 phase precipitation with larger particles was observed. Since elongation declined significantly until fracture with increasing Fe content up to 0.4 wt%, the ZnCuFe (0.2 wt%) alloy achieved a good balance between mechanical strength and ductility, with an ultimate tensile strength of 202.3 MPa and elongation at fracture of 41.2%. Moreover, the addition of Fe successfully accelerated the degradation of ZnCuFe alloys. The ZnCuFe (0.2 wt%) alloy showed relatively uniform corrosion in the long-term degradation test. Furthermore, extracts of the ZnCuFe (0.2 wt%) alloy showed no apparent cytotoxic effects against L929 fibroblasts, Saos-2 osteoblasts or TAg periosteal cells. The ZnCuFe (0.2 wt%) alloy exhibited the potential to inhibit bacterial adhesion of Streptococcus gordonii and mixed oral bacteria. Our study provides evidence that the ZnCuFe (0.2 wt%) alloy can represent a promising material for the application as a suitable GBR membrane.

12.
Mater Sci Eng C Mater Biol Appl ; 108: 110487, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923968

ABSTRACT

It remains challenging to build up a multifunctional coating onto biodegradable magnesium (Mg) for biomedical use. In this study, a small amount of titanium dioxide (TiO2) has been incorporated in situ into phytic acid (PA) coating when it was chemically deposited on Mg substrate targeted to biodegradable implant applications. Ultraviolet (UV) irradiation was utilized in the liquid phase deposition of TiO2 to improve the quality of coating (PA&TiO2-UV). This PA&TiO2-UV coating was compact, thicker and more hydrophilic compared with sole PA or TiO2 coating. The PA&TiO2-UV coated Mg presented a seven times lower electrochemical corrosion current density as well as significantly slower in vitro degradation rate up to 500 h in phosphate buffer saline as compared to the direct PA coated Mg. In addition, the UV irradiation showed remarkably to promote the MC3T3-E1 pre-osteoblast cells adhesion and proliferation especially after 7 days of culture. Further, the PA&TiO2-UV coating adhered more firmly on Mg substrate after 90° bending than the other coatings, indicating a better mechanical compliance on Mg substrate. These results make this PA&TiO2-UV complex coating bodes well for biodegradation slowing-down, osteo-compatible as well as mechanical compliant modification of Mg for orthopedic implants applications.


Subject(s)
Coated Materials, Biocompatible/chemistry , Magnesium/chemistry , Osteoblasts/drug effects , Phytic Acid/chemistry , Titanium/chemistry , Absorbable Implants , Animals , Biodegradation, Environmental , Cell Adhesion , Cell Line , Cell Proliferation , Corrosion , Kinetics , Materials Testing , Mice , Orthopedics , Osteoblasts/cytology , Pressure , Surface Properties , Ultraviolet Rays
13.
Mater Sci Eng C Mater Biol Appl ; 103: 109826, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349503

ABSTRACT

In this study, zinc­copper (ZnCu) alloys were investigated regarding their feasibility as absorbable metals for osteosynthesis implants, especially in the craniomaxillofacial area. Mechanical properties and in vitro corrosion behavior of as-rolled Zn-xCu (x = 1, 2 and 4 wt%) alloys were systematically evaluated and screened. The as-rolled Zn4Cu alloy had mechanical properties that were superior to the most absorbable craniomaxillofacial osteosynthesis materials recently reported. The addition of Cu to Zn showed to have no apparent effect on the corrosion rates of the samples. The rolling process on Zn and Zn1Cu resulted in more uniform corrosion than on as-cast counterparts after 28 days immersion. Furthermore, the Zn4Cu alloys exhibited no apparent cytotoxic effect towards L929, TAg or Saos-2 cells. Proliferation rates of TAg and Saos-2 cells were shown to be activated by specific Zn ion concentrations in the as-rolled Zn4Cu alloy extracts. Analysis of in vitro antibacterial properties revealed that the as-rolled Zn4Cu alloy possessed the potential to inhibit biofilm formation of mixed oral bacteria. We conclude that the as-rolled Zn4Cu alloy might be a promising material for fabrication of craniomaxillofacial osteosynthesis implants.


Subject(s)
Absorbable Implants , Alloys , Biocompatible Materials , Copper , Fracture Fixation, Internal , Materials Testing , Zinc , Alloys/chemistry , Alloys/pharmacology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Line, Tumor , Copper/chemistry , Copper/pharmacology , Corrosion , Humans , Mice , Zinc/chemistry , Zinc/pharmacology
14.
Chemistry ; 25(33): 7903-7911, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30974005

ABSTRACT

The advantage of using composite electrode materials for energy storage is, to a large extent, the synergistic role of their components. Our work focuses on the investigation of the interactions of each phase, exploring the patterns found with the change of materials to provide theoretical or experimental foundations for future study. Here, conductive polymers (CPs), including polyaniline (PANi), polypyrrole (PPy), and polythiophene (PTh), as well as reduced graphene oxide (rGO), and TiO2 with the different crystalline phases of anatase and rutile were applied to form a series of free-standing and flexible binary or ternary composite electrodes. The electrochemical behaviors of these composite electrodes are presented. The results indicate that the synergistic improvement in electrochemical performance is due to the incorporation of the different components. CPs significantly increase the current density of these composite films and contribute their pseudocapacitance to improve the specific capacitance, but lead to a decline in cycle stability. After introducing TiO2 , both the specific capacitance and the cycle-stability of rGO-TiO2 -CP were synergistically improved. A CP can magnify the pseudocapacitance behavior of any of the TiO2 crystalline phases, and interactions vary with the specific CP and the specific TiO2 crystalline phase employed. The synergistic effects of the as-prepared composites were theoretically predicted and explored.

15.
J Tissue Eng Regen Med ; 12(6): 1374-1388, 2018 06.
Article in English | MEDLINE | ID: mdl-29677404

ABSTRACT

The challenge of developing scaffolds to reconstruct critical-sized calvarial defects without the addition of high levels of exogenous growth factor remains relevant. Both osteogenic regenerative efficacy and suitable mechanical properties for the temporary scaffold system are of importance. In this study, a Mg alloy mesh reinforced polymer/demineralized bone matrix (DBM) hybrid scaffold was designed where the hybrid scaffold was fabricated by a concurrent electrospinning/electrospraying of poly(lactic-co-glycolic acid) (PLGA) polymer and DBM suspended in hyaluronic acid (HA). The Mg alloy mesh significantly increased the flexural strength and modulus of PLGA/DBM hybrid scaffold. In vitro results demonstrated that the Mg alloy mesh reinforced PLGA/DBM hybrid scaffold (Mg-PLGA@HA&DBM) exhibited a stronger ability to promote the proliferation of bone marrow stem cells (BMSCs) and induce BMSC osteogenic differentiation compared with control scaffolding materials lacking critical components. In vivo osteogenesis studies were performed in a rat critical-sized calvarial defect model and incorporated a variety of histological stains and immunohistochemical staining of osteocalcin. At 12 weeks, the rat model data showed that the degree of bone repair for the Mg-PLGA@HA&DBM scaffold was significantly greater than for those scaffolds lacking one or more of the principal components. Although complete defect filling was not achieved, the improved mechanical properties, promotion of BMSC proliferation and induction of BMSC osteogenic differentiation, and improved promotion of bone repair in the rat critical-sized calvarial defect model make Mg alloy mesh reinforced PLGA/DBM hybrid scaffold an attractive option for the repair of critical-sized bone defects where the addition of exogenous isolated growth factors is not employed.


Subject(s)
Alloys/pharmacology , Extracellular Matrix/chemistry , Magnesium/pharmacology , Skull/pathology , Tissue Scaffolds/chemistry , Alkaline Phosphatase/metabolism , Animals , Bone Matrix/chemistry , Calcium/metabolism , Female , Osteogenesis/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Rats, Sprague-Dawley
16.
Sci Rep ; 8(1): 4412, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29535345

ABSTRACT

This paper reports a novel loofah-derived hierarchical scaffold to obtain three-dimensional biocarbon-graphene-TiO2 (BC-G-TiO2) composite materials as electrodes for supercapacitors. The loofah scaffold was first loaded with G and TiO2 by immersing, squeezing, and loosening into the mixed solution of graphene oxide and titania, and then carbonized at 900 °C to form the BC-G-TiO2 composite. The synergistic effects of the naturally hierarchical biocarbon structure, graphene, and TiO2 nanoparticles on the electrochemical properties are analyzed. The biocarbon provides a high interconnection and an easy accessibility surface for the electrolyte. Graphene bridged the BC and TiO2 nanoparticles, improved the conductivity of the BC-G-TiO2 composite, and increased the electron transfer efficiency. TiO2 nanoparticles also contributed to the pesudocapacitance and electrochemical stability.

17.
J Mater Chem B ; 5(22): 4162-4176, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-32264147

ABSTRACT

Heparin (Hep) or bivalirudin (BVLD) were immobilized in an organic phytic acid (PA) coating on Mg by an in situ chemical route. Such a drug-loaded PA coating was designed to enhance both corrosion control and biocompatibility. It was found that both Hep- and BVLD-loaded PA coatings exhibited a dual role in effectively controlling corrosion as well as providing a biofunctional effect. Experiments involving electrochemical corrosion and in vitro degradation by immersion revealed that PA&Hep- and PA&BVLD-coated Mg had the same effect or even slower corrosion/degradation in phosphate buffered saline compared to PA-coated Mg, and it degraded significantly slower than untreated Mg. Moreover, Hep- or BVLD-loaded PA coatings showed relatively good hemocompatibility, with a prolonged clotting time, inhibited platelets adhesion as well as reduced hemolysis compared to untreated Mg. In addition, both PA&Hep and PA&BVLD coatings promoted endothelial cells growth and restrained the proliferation of smooth muscle cells. In vivo assays indicated that PA&Hep-coated Mg exhibited a significant difference in mass loss compared to untreated Mg, as well as better histocompatibility than other samples. These results demonstrate that our coating strategy shows a great potential in surface modification of biodegradable Mg. Finally, the mechanism for the incorporation of the drugs into the PA coating is discussed from both theoretical and practical perspectives.

18.
Corros Sci ; 104: 277-289, 2016 Mar.
Article in English | MEDLINE | ID: mdl-28626241

ABSTRACT

An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

19.
J Biomed Mater Res A ; 103(5): 1640-52, 2015 May.
Article in English | MEDLINE | ID: mdl-25125028

ABSTRACT

Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application.


Subject(s)
Absorbable Implants , Bone and Bones/drug effects , Coated Materials, Biocompatible/pharmacology , Magnesium/pharmacology , Materials Testing , Phosphorous Acids/pharmacology , Animals , Calcium Phosphates/pharmacology , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Chemical Precipitation , Corrosion , Electrochemical Techniques , Immersion , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Osteogenesis/drug effects , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Surface Properties , Water
20.
ACS Appl Mater Interfaces ; 6(22): 19531-43, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25363151

ABSTRACT

Biodegradable, a new revolutionary concept, is shaping the future design of biomedical implants that need to serve only as a temporary scaffold. Magnesium appears to be the most promising biodegradable metal, but challenges remain in its corrosion-controlling and uncertain biocompatibility. In this work, we employ chemical conversion and alternating dip-coating methods to anchor and deposit an Mg ion-integrated phytic acid (Mg-PA) coating on Mg, which is supposed to function both corrosion-controlling and osteo-compatible. It was ascertained that PA molecules were covalently immobilized on a chemically converted Mg(OH)2 base layer, and more PA molecules were deposited subsequently via chelating reactions with the help of additive Mg ions. The covalent immobilization and the Mg ion-supported chelating deposition contribute to a dense and homogeneous protective Mg-PA coating, which guarantees an improved corrosion resistance as well as a reduced degradation rate. Moreover, the Mg-PA coating performed osteo-compatible to promote not only bioactivity of bonelike apatite precipitation, but also induced osteoblast cells adhesion and proliferation. This is ascribed to its nature of PA molecule and the biocompatible Mg ion, both of which mimic partly the compositional structure of bone. Our magnesium ion-integrated PA-coated Mg might bode well for the future of biodegradable bone implant application.


Subject(s)
Absorbable Implants , Coated Materials, Biocompatible/chemistry , Magnesium/chemistry , Phytic Acid/chemistry , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Corrosion , Ions/chemistry , Osteoblasts/cytology , Osteoblasts/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...