Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(2): 473-7, 2011 Feb.
Article in Chinese | MEDLINE | ID: mdl-21510407

ABSTRACT

The spectral characteristic of remotely sensed image is mainly the results of integrative effects on spectrum from heterogeneous ground reflectors. Investigating its spatial distribution characteristics may be helpful for image interpreting and modeling based on remote sensing technique. In the present study, spatial heterogeneity of remotely sensed multispectral TM image across a hilly area in late October was studied by the combination of statistical method and multifractal analysis. The results showed that distribution of digital number (DN) values of visible spectra (0.45-0.69 microm) had statistical scale-invariance. The generalized fractal dimension function D(q) suggested that distribution of TM 2 (0.52-0.60 microm) DN values was monofractal type, whereas DN values of TM 1 (0.45-0.52 microm) and TM 3 (0.63-0.69 microm) had multifractal distribution characteristics. The parameters (alpha(max)-alpha(min)) and [f(a(max))-f(alpha(min))] of multifractal spectra further indicated that TM 3 DN values had the high est spatial heterogeneity and most abundant information, followed by TM 1, while the extremely narrow spectrum of TM 2 DN values showed its relatively low spatial heterogeneity and information capacity.

2.
Biol Direct ; 4: 20, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19531225

ABSTRACT

BACKGROUND: Over the past two decades, there have been several approximate methods that adopt different mutation models and used for estimating nonsynonymous and synonymous substitution rates (Ka and Ks) based on protein-coding sequences across species or even different evolutionary lineages. Among them, MYN method (a Modified version of Yang-Nielsen method) considers three major dynamic features of evolving DNA sequences-bias in transition/transversion rate, nucleotide frequency, and unequal transitional substitution but leaves out another important feature: unequal substitution rates among different sites or nucleotide positions. RESULTS: We incorporated a new feature for analyzing evolving DNA sequences-unequal substitution rates among different sites-into MYN method, and proposed a modified version, namely gamma (gamma)-MYN, based on an assumption that the evolutionary rate at each site follows a mode of gamma-distribution. We applied gamma-MYN to analyze the key estimator of selective pressure omega (Ka/Ks) and other relevant parameters in comparison to two other related methods, YN and MYN, and found that neglecting the variation of substitution rates among different sites may lead to biased estimations of omega. Our new method appears to have minimal deviations when relevant parameters vary within normal ranges defined by empirical data. CONCLUSION: Our results indicate that unequal substitution rates among different sites have variable influences on omega under different evolutionary rates while both transition/transversion rate ratio and unequal nucleotide frequencies affect Ka and Ks thus selective pressure omega.


Subject(s)
Algorithms , Amino Acid Substitution/genetics , Computational Biology/methods , Animals , Base Sequence , Codon/genetics , Computer Simulation , Humans , Selection, Genetic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...