Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 35(3): 892-900, 2014 Mar.
Article in Chinese | MEDLINE | ID: mdl-24881375

ABSTRACT

Greenhouse gas (GHG) emission from vegetable land is of great concern recently because agriculture land is one of the major sources contributing to global GHG emission. In this study, an experiment of Lactuca sativa L. land applied with different animal manure composts was carried out in a greenhouse vegetable land located in the surburb of Beijing to monitor the emission of GHG (CH4 and N2O) and ammonia in situ, and to analyze the affecting factors of GHG and ammonia emission. Results showed that the emission factors (EFs) of CH4 from Treatment NRM, RM and CF were 0.2%, 0.027% and 0.004%, respectively,the EFs of N2O from these three treatments were 0.18%, 0.63% and 0.74%, respectively, and the EFs of ammonia were 2.00%, 3.98% and 2.53%, respectively. CH4 emission flux was significantly affected by soil temperature and humidity, while N2O emission flux was related to soil temperature, surface temperature and humidity. The emission fluxes of CH4, N2O and NH3 were significantly affected by soil moisture, but there was little relation between CH4, N2O and NH3 emissions and the ambient temperature in the greenhouse.


Subject(s)
Ammonia/analysis , Manure , Methane/analysis , Nitrous Oxide/analysis , Soil/chemistry , Agriculture , Animals , Crops, Agricultural , Humidity , Temperature
2.
Huan Jing Ke Xue ; 35(2): 533-40, 2014 Feb.
Article in Chinese | MEDLINE | ID: mdl-24812944

ABSTRACT

It is of great concern for greenhouse gas (GHG) reduction of animal manure management in China due to the extreme lack of GHG emission data during animal manure composting. Therefore, the purpose of this study was to investigate the effects of turning frequency on the emission of GHG (CH4, N2O) and NH3 during swine manure windrow composting through on-site observation of a full scale test in Beijing. Results showed that the turning frequency had significant impacts on the emission of both GHG and ammonia, which did not only increase the emission of GHG and ammonia, but also increased the percentage of total nitrogen loss due to NH3 emission (42.2% at turning once a week and 70.05% at turning twice a week, respectively). Compared with N2O emission, CH4 emission was the main contributor to Global Warming Potentials (GWPs).


Subject(s)
Ammonia/analysis , Carbon Dioxide/analysis , Manure , Methane/analysis , Nitrous Oxide/analysis , Agriculture/methods , Animals , China , Greenhouse Effect , Nitrogen/analysis , Soil , Swine , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...