Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Open Med (Wars) ; 19(1): 20240918, 2024.
Article in English | MEDLINE | ID: mdl-38584832

ABSTRACT

Background: Lipid metabolism disorders lead to lipotoxicity. The hyperlipidemia-induced early stage of renal injury mainly manifests as podocyte damage. CD36 mediates fatty acid uptake and the subsequent accumulation of toxic lipid metabolites, resulting in podocyte lipotoxicity. Methods: Male Sprague-Dawley rats were divided into two groups: the normal control group and the high-fat diet group (HFD). Podocytes were cultured and treated with palmitic acid (PA) and sulfo-N-succinimidyl oleate (SSO). Protein expression was measured by immunofluorescence and western blot analysis. Boron-dipyrromethene staining and Oil Red O staining was used to analyze fatty acid accumulation. Results: Podocyte foot process (FP) effacement and marked proteinuria occurred in the HFD group. CD36 protein expression was upregulated in the HFD group and in PA-treated podocytes. PA-treated podocytes showed increased fatty acid accumulation, reactive oxygen species (ROS) production, and actin cytoskeleton rearrangement. However, pretreatment with the CD36 inhibitor SSO decreased lipid accumulation and ROS production and alleviated actin cytoskeleton rearrangement in podocytes. The antioxidant N-acetylcysteine suppressed PA-induced podocyte FP effacement and ROS generation. Conclusions: CD36 participated in fatty acid-induced FP effacement in podocytes via oxidative stress, and CD36 inhibitors may be helpful for early treatment of kidney injury.

2.
Biochem Biophys Res Commun ; 525(4): 954-961, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32173525

ABSTRACT

Diabetic nephropathy (DN), the primary cause of end-stage renal disease (ESRD), is often accompanied by dyslipidemia, which is closely related to the occurrence and development of DN and even the progression to ESRD. Mitophagy, the selective degradation of damaged and dysfunctional mitochondria by autophagy, is a crucial mitochondrial quality control mechanism, and largely regulated by PINK1 (PTEN-induced putative kinase 1)/Parkin signaling pathway. In the present study, we demonstrated that PA induced mitochondrial damage and excessive mitoROS generation in podocytes. We also found PA treatment resulted in the activation of mitophagy by increasing co-localization of GFP-LC3 with mitochondria and enhancing the formation of mitophagosome, stabilization of PINK1 and mitochondrial translocation of Parkin, which indicated that PINK1/Parkin pathway was involved in PA-induced mitophagy in podocytes. Furthermore, inhibition of mitophagy by silencing Parkin dramatically aggravated PA-induced mitochondrial dysfunction, mitoROS production, and further enhanced PA-induced apoptosis of podocytes. Finally, we showed that PINK1/Parkin pathway were up-regulated in kidney of high fat diet (HFD)-induced obese rats. Taken together, our results suggest that PINK1/Parkin mediated mitophagy plays a protective role in PA-induced podocytes apoptosis through reducing mitochondrial ROS production and that enhancing mitophagy provides a potential therapeutic strategy for kidney diseases with hyperlipidemia, such as DN.


Subject(s)
Apoptosis/drug effects , Mitochondria/drug effects , Mitophagy/genetics , Palmitic Acid/pharmacology , Podocytes/drug effects , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Diet, High-Fat , Gene Silencing , Kidney/metabolism , Kidney/physiopathology , Male , Membrane Potential, Mitochondrial/physiology , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Obesity/metabolism , Podocytes/metabolism , Podocytes/ultrastructure , Protein Kinases/genetics , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Ubiquitin-Protein Ligases/genetics
3.
Sci Rep ; 7: 42764, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28225005

ABSTRACT

Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.


Subject(s)
Apoptosis , Autophagy , Palmitic Acid/pharmacology , Podocytes/metabolism , Animals , Cell Line , Chloroquine/pharmacology , Membrane Potential, Mitochondrial , Mice , Podocytes/drug effects , Reactive Oxygen Species/metabolism
4.
PLoS One ; 10(5): e0127507, 2015.
Article in English | MEDLINE | ID: mdl-26000608

ABSTRACT

BACKGROUND: Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN), respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated. METHODS: The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20) by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5) and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software. RESULTS: CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO), the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol) inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid. CONCLUSIONS: CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.


Subject(s)
Apoptosis/physiology , CD36 Antigens/metabolism , Oxidative Stress/physiology , Palmitic Acid/pharmacology , Podocytes/metabolism , Animals , Apoptosis/drug effects , CD36 Antigens/genetics , Cyclic N-Oxides/pharmacology , Humans , Kidney/drug effects , Kidney/metabolism , Mice , Oleic Acids/pharmacology , Oxidative Stress/drug effects , Podocytes/drug effects , Reactive Oxygen Species/metabolism , Spin Labels , Succinimides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...