Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(22): 28550-28559, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776220

ABSTRACT

Solar-powered steam generation equipment has experienced considerable advancement in recent years as it offers a cleaner and greener method for freshwater production. However, the devices always suffer from a complicated process, high cost, and salt accumulation, which hinder their further application. Here, inspired by the water lily, a highly efficient and antisalt accumulation interfacial solar-driven steam generation device was designed by using the tannic acid-Fe3+ complex as photothermal material. The designed evaporator could be quickly unfolded within 24 s after being irradiated with light and then produce fresh water. It folded within 10 s and then sank into water for removing the accumulated salt after removing the irradiation sources. In addition, the tannic acid-Fe3+ complex on the evaporator surface and the angle of the evaporator allowed light to be reflected several times within the evaporator, effectively increasing the solar energy conversion efficient (2.22 kg/(m2·h)), and apparently, the overall evaporation efficiency of 139.18% was achieved under 1 sun illumination. Moreover, it exhibited an extraordinary antisalt accumulation capacity (by working continuously for 7 days in 10 wt % saline water and 80% reduction in salt accumulation) as well as a low price ($ 1.11/m2). This design would provide a strategy to prepare an antisalt accumulation solar steam devices.

2.
Int J Biol Macromol ; 270(Pt 2): 132500, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763234

ABSTRACT

Bamboo, as a renewable bioresource, exhibits advantages of fast growth cycle and high strength. Bamboo-based composite materials are a promising alternative to load-bearing structural materials. It is urgent to develop high-performance glued-bamboo composite materials. This study focused on the chemical bonding interface to achieve high bonding strength and water resistance between bamboo and dialdehyde cellulose-polyamine (DAC-PA4N) adhesive by activating the bamboo surface. The bamboo surface was initially modified in a directional manner to create an epoxy-bamboo interface using GPTES. The epoxy groups on the interface were then chemically crosslinked with the amino groups of the DAC-PA4N adhesive, forming covalent bonds within the adhesive layer. The results demonstrated that the hot water strength of the modified bamboo was improved by 75.8 % (from 5.17 to 9.09 MPa), and the boiling water strength was enhanced by 232 % (from 2.10 to 6.99 MPa). The bonding and flexural properties of this work are comparable to those of commercial phenolic resin. The activation modification of the bamboo surface offers a novel approach to the development of low-carbon, environmentally friendly, and sustainable bamboo engineering composites.


Subject(s)
Adhesives , Cellulose , Sasa , Cellulose/chemistry , Cellulose/analogs & derivatives , Adhesives/chemistry , Sasa/chemistry , Surface Properties , Water/chemistry , Epoxy Resins/chemistry
3.
Small ; : e2401942, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593325

ABSTRACT

Solar energy conversion technologies, particularly solar-driven photothermal conversion, are both clean and manageable. Although much progress has been made in designing solar-driven photothermal materials, significant challenges remain, not least the photobleaching of organic dyes. To tackle these issues, micro-carbonized polysaccharide chains, with carbon dots (CDs) suspended from the chains, are conceived, just like grapes or tomatoes hanging from a vine. Carbonization of sodium carboxymethyl cellulose (CMC) produces just such a structure (termed CMC-g-CDs), which is used to produce an ultra-stable, robust, and efficient solar-thermal film by interfacial interactions within the CMC-g-CDs. The introduction of the CDs into the matrix of the photothermal material effectively avoided the problem of photobleaching. Manipulating the interfacial interactions (such as electrostatic interactions, van der Waals interactions, π-π stacking, and hydrogen bonding) between the CDs and the polymer chains markedly enhances the mechanical properties of the photothermal film. The CMC-g-CDs are complexed with Fe3+ to eliminate leakage of the photothermal reagent from the matrix and to solve the problem of poor water resistance. The resulting film (CMC-g-CDs-Fe) has excellent prospects for practical application as a photothermal film.

4.
Int J Biol Macromol ; 265(Pt 2): 131053, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521299

ABSTRACT

How to efficiently produce high performance plywood is of particular interest, while its sensitivity to moisture is overcome. This paper presents a simple and scalable strategy for the preparation of high-performance plywood based on the chemical bonding theory; a wood interfacial functionalized platform (WIFP) based on (3-aminopropyl) triethoxysilane (APTES) was established. Interestingly, the APTES-enhanced dialdehyde cellulose-based adhesive (DAC-APTES) was able to effectively establish chemically active adhesive interfaces; the dry/wet shear strength of WIFP/DAC-APTES adhesive was 3.15/1.31 MPa, which was much higher than 0.7 MPa (GB/T 9846-2015). The prepared plywood showed excellent wood-polymer interface adhesion, which exceeded the force that the wood itself could withstand. In addition, the DAC-APTES adhesive exhibits moisture evaporation-induced curing behavior at room temperature and can easily support the weight of an adult weighing 65.7 Kg. This research provides a novel approach for functionalized interface design of wood products, an effective means to prepare high-performance plywood.


Subject(s)
Cellulose , Silanes , Wood , Adult , Humans , Polymers , Propylamines
5.
Small ; : e2309519, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38299463

ABSTRACT

Aqueous solvents in Zn metal batteries inevitably induces hydrogen evolution reactions (HER) due to fluctuating pH levels in electrolytes, leading to severe side reactions and dendrite growth. To address these challenges, buffering agents have been recently proposed as a solution to maintain constant electrolyte pH values upon cycling. Nonetheless, the critical role of buffering additives' premier pH in determining interface stability is largely overlooked. Herein, two types of buffering agents, single amphoteric and conjugate acid-base pairs, are employed to correlate their initial pHs with the interface stability. Based on the observations, the lifetime of Zn metal anodes initially increases and then decreases as the initial pH level goes up from 2.0 to 5.0, with an optimal lifetime at pH 3.3 for both buffering agent categories. This phenomenon lies in ample H+ in low pH and rich OH- in high pH, leading to either severe HER or by-products passivation layer. The optimized pH allows cells to deliver a high average Coulombic efficiency of 99.61% over 1500 cycles at a large current density of 5 mA cm-2 , which is significantly superior to 345 cycles achieved in the pristine electrolyte. Furthermore, this enhanced interface enables stable Zn/activated carbon full batteries over 15 000 cycles.

6.
ACS Appl Mater Interfaces ; 16(6): 7950-7960, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38306456

ABSTRACT

Polysaccharide-based adhesives, especially chitosan (CS)-derived adhesives, serve as promising sustainable alternatives to traditional adhesives. However, most demonstrate a poor adhesive strength. Inspired by the inherent layered structure of marine arthropods (lobsters), a core-shell structure (SiO2-NH2@OPG) with amine-functionalized silica (SiO2-NH2) as the core and oxidized pyrogallol (OPG) as the shell is prepared in this study. The compound is blended with CS to produce a structural biomimetic wood adhesive (SiO2-NH2@OPG/CS) with excellent performance. In addition to thermocompressive curing, this adhesive exhibits a water-evaporation-induced curing behavior at room temperature. With reference to the design mechanism of the lobster cuticle, this microphase-separated structure consists of clustered nanofibers with varying amounts of SiO2-NH2@OPG particles between the fibers. This intriguing microphase structure and its mechanical effects could offer a powerful solution for improving the functional modification of wood composites.


Subject(s)
Chitosan , Chitosan/chemistry , Adhesives/chemistry , Biomimetics , Silicon Dioxide
7.
Small ; 19(28): e2300274, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37026663

ABSTRACT

The practical application of Zn metal anodes in electronic devices is hindered by dendrite growth and parasitic reactions. Electrolyte optimization, particularly the introduction of organic co-solvents, is widely used to circumvent these challenges. Various organic solvents in a wide range of concentrations have been reported; however, their influences and corresponding working mechanisms at different concentrations are largely unexplored in the same organic species. Herein, economical, low-flammable ethylene glycol (EG) is used as a model co-solvent in aqueous electrolytes to examine the relationship between its concentration, anode-stabilizing effect, and mechanism. Two maximal values are observed for the lifetime of Zn/Zn symmetric batteries under EG concentrations from 0.05 vol% to 48 vol%. Zn metal anodes can stably run for over 1700 h at a low EG content (0.25 vol%) and high EG content (40 vol%). Based on the complementary experimental and theoretical calculations, the enhancements in low- and high-content EG are ascribed to the specific surface adsorption for suppressed dendrite growth and the regulated solvation structure for inhibited side reactions, respectively. Intriguingly, a similar concentration-reliant bimodal phenomenon is observed in other low-flammable organic solvents (e.g., glycerol and dimethyl sulfoxide), thereby suggesting universality of this study and providing insight into electrolyte optimization.

8.
Angew Chem Int Ed Engl ; 61(40): e202208180, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35882626

ABSTRACT

Sustainable carbon dots (CDs) based on furfuraldehyde (F-CD) resulted in a photosensitive material after pursuing the Alder-Longo reaction. The porphyrin moiety formed connects the F-CDs in a covalent organic network. This heterogeneous material (P-CD) was characterized by XPS indicating incorporation of the respective C, N and O moieties. Time resolved fluorescence including global analysis showed contribution of three linked components to the overall dynamics of the excited state. Electrochemical and photonic properties of this heterogeneous material facilitated photopolymerization in a photo-ATRP setup where either CuBr2 /TPMA, FeBr3 /Br- or a metal free reaction setup activated controlled polymerization. Chain extension experiments worked in all three cases showing end group fidelity for activation of controlled block copolymerization using MMA and styrene as monomers. Traditional radical polymerization using a diaryl iodonium salt as co-initiator failed.

9.
Can J Physiol Pharmacol ; 99(5): 506-511, 2021 May.
Article in English | MEDLINE | ID: mdl-32970960

ABSTRACT

Physical exercise is essential for the amelioration of insulin resistance (IR). The mechanisms in charge of improved IR, regulated by exercise, are insufficiently studied. Previous research revealed that Sirtuin 6 (SIRT6) - mediated insulin signaling acts a crucial element in hepatic IR. The objective of our research was to determine the effects of exercise on SIRT6-mediated insulin signaling in liver of IR rats. Forty male Sprague Dawley rats were randomly assigned to four groups (n = 10 rats each): control rats fed with standard chow (Lean group); sedentary rats fed with a high-fat diet (HFD-SED); rats fed with HFD and submitted to 8 week chronic swimming exercise training (HFD-CE); and rats fed HFD and submitted to one acute swimming exercise training (HFD-AE). HFD feeding lead to increased body weight, accumulation of hepatic triglyceride and serum free fatty acids, and enhanced gluconeogenesis. Besides, HFD feeding decreased body insulin sensitivity. Hepatic USP10 and SIRT6 protein levels decreased under obese status. Both chronic and acute exercise intervention alleviated physiological and metabolic status, increased hepatic USP10 and SIRT6 levels, improved insulin signaling transduction, and inhibited gluconeogenesis. These results showed that exercise intervention regulated SIRT6-mediated insulin signaling, which contributes to our understanding of the molecular mechanisms behind IR, in that a regular exercise can mitigate the effects of IR.


Subject(s)
Insulin Resistance , Obesity , Animals , Male , Rats
12.
Wei Sheng Yan Jiu ; 48(4): 611-620, 2019 Jul.
Article in Chinese | MEDLINE | ID: mdl-31601344

ABSTRACT

OBJECTIVE: To investigate the effect of chronic and acute swimming exercise intervention on the mitogen-activated extracellular signal-regulated kinase(MEK) and extracellular signal-regulated kinase 1(ERK1) phosphorylation level in adipose tissues of obesityinduced insulin resistance rats. METHODS: A total of 100 SD rats were randomly divided into control group(n=10) fed with normal diet and high-fat diet group(n=90) fed with high fat diet. After 8 weeks, one third rats(n=30) with upper weight in high-fat diet group were selected and randomly divided into high-fat diet sedentary group(n=10), chronic exercise group(n=10) and acute exercise group(n=10). Under another 8-week high-fat diet feeding, exercise intervention was performed according to the exercise procedure; control group was fed with normal diet for 8 weeks. After exercise intervention, visceral adipose tissues were separated and MEK and ERK1 phosphorylation level in adipose tissue was detected by Western blot method. RESULTS: Chronic exercise intervention significantly reduced body weight, visceral fat weight and visceral fat weight/body weight ratio(P<0. 01), and acute exercise intervention had no significant effect on body weight, visceral fat weight and visceral fat weight/body weight ratio. Both chronic and acute exercise intervention significantly increased body insulin sensitivity(P<0. 05), as well as significantly decreased MEK and ERK1 phosphorylation level in adipose tissues(P<0. 01). CONCLUSION: The improvement of obesity-induced insulin resistance by exercise might be related to inhibited phosphorylation of MEK and ERK1 in adipose tissues.


Subject(s)
Adipose Tissue/metabolism , Insulin Resistance/physiology , MAP Kinase Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Physical Conditioning, Animal , Swimming , Animals , Diet, High-Fat , Insulin , Phosphorylation , Rats , Rats, Sprague-Dawley
13.
J Cell Physiol ; 234(5): 7467-7474, 2019 05.
Article in English | MEDLINE | ID: mdl-30367484

ABSTRACT

Exercise is an effective therapy for insulin resistance. However, the underlying mechanism remains to be elucidated. Previous research demonstrated that TGFß-activated kinase 1 (TAK1)-dependent signaling plays a crucial character in hepatic insulin resistance. Hepatic ubiquitin specific protease 4 (USP4), USP18, and dual-specificity phosphatases 14 (DUSP14) can suppress TAK1 phosphorylation, besides tumor necrosis factor receptor-associated factor 3 (TRAF3) and tripartite motif 8 (TRIM8) promote its phosphorylation. In this study, we tried to verify our hypothesis that exercise improves insulin resistance in high-fat diet (HFD)-induced obese (DIO) rats via regulating the TAK1 dependent signaling and TAK1 regulators in liver. Forty male Sprague-Dawley rats were randomized into four groups (n = 10): standard diet and sedentary as normal control; fed on HFD and DIO-sedentary; fed on HFD and DIO-chronic exercise; and fed on HFD and DIO-acute exercise. HFD feeding resulted in increased body weight, visceral fat mass, serum FFAs and hepatic lipid deposition, but decreased hepatic glycogen content and insulin sensitivity. Moreover, hepatic TRAF3 and TRIM8 protein levels increased, whereas USP4, USP18, and DUSP14 protein levels were decreased under obese status, which resulted in enhanced TAK1 phosphorylation and impaired insulin signaling. Exercise training, containing chronic and acute mode, both ameliorated insulin resistance. Meanwhile, decreased TAK1, c-Jun N-terminal kinase 1 (JNK1), and insulin receptor substrate 1 (IRS1) phosphorylation enhanced Akt phosphorylation in liver. Moreover, exercise enhanced USP4 and DUSP14 protein levels, whereas decreased TRIM8 protein levels in obese rats' liver. These results showed that exercise triggered a crucial modulation in TAK1-dependent signaling and its regulators in obese rats' liver, and distinct improvement in insulin sensitivity, which provide new insights into the mechanism by which physical exercise improves insulin resistance.


Subject(s)
Insulin Resistance/physiology , Insulin/metabolism , Liver/metabolism , MAP Kinase Kinase Kinases/metabolism , Obesity/metabolism , Physical Conditioning, Animal/physiology , Transforming Growth Factor beta/metabolism , Animals , Carrier Proteins/metabolism , Diet, High-Fat/adverse effects , Intra-Abdominal Fat/metabolism , Male , Obesity/physiopathology , Phosphorylation/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , TNF Receptor-Associated Factor 3/metabolism , Ubiquitin-Specific Proteases/metabolism
14.
Life Sci ; 207: 23-29, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29802941

ABSTRACT

AIMS: Little is known regarding whether the NFE2/miR-423-5p and FAM3A-ATP-Akt pathway in liver mediates exercise allured alleviation of insulin resistance connected with diet-induced obesity. This research inquired the influence of exercise on liver insulin sensitivity and whole body insulin resistance in high-fat diet fed rats. MATERIALS AND METHODS: Forty male Sprague-Dawley rats at seven-week-old were assigned to four groups at random: standard diet as normal control group (NC, n = 10), high-fat diet group (HFD, n = 10), high-fat diet with chronic exercise intervention group (HFD-CE, n = 10) and high-fat diet with acute exercise intervention group (HFD-AE, n = 10). KEY FINDINGS: Compared with rats fed with a standard diet, eight-week high-fat diet feeding lead to elevated body weight, visceral fat content and serum FFAs, and decreased insulin sensitivity index. Moreover, high-fat diet enhanced NFE2 protein expression and miR-423-5p level, decreased FAM3A mRNA and protein expression, ATP level and Akt phosphorylation in liver. In contrast, physical exercise, both chronic and acute exercise alleviated whole body insulin resistance, reduced hepatic NFE2 and miR-423-5p expression, and serum FFAs level, meanwhile enhanced FAM3A mRNA and protein expression, ATP level and Akt phosphorylation in liver. The current findings indicated that exercise in diet-induced obesity, both chronic and acute, induce a momentous regulation in NFE2/miR-423-5p and FAM3A-ATP-Akt pathway in liver, and improve hepatic insulin sensitivity and whole body insulin resistance. SIGNIFICANCE: All these results supply crucial evidence in our comprehending of the molecular mechanism that connected exercise to an alleviation of insulin resistance.


Subject(s)
Cytokines/metabolism , Insulin Resistance , Insulin/metabolism , MicroRNAs/metabolism , NF-E2 Transcription Factor/metabolism , Physical Conditioning, Animal , Adenosine Triphosphate/metabolism , Animals , Area Under Curve , Diet , Diet, High-Fat , Glucose Tolerance Test , Liver/metabolism , Male , Obesity/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley
15.
Org Biomol Chem ; 14(19): 4405-8, 2016 May 11.
Article in English | MEDLINE | ID: mdl-27117399

ABSTRACT

A facile and practical method for the preparation of 6H-indolo[2,3-b]quinolines and neocryptolepines was developed under the promotion of the easily available ferric trichloride, affording the desired products with moderate to good yields.


Subject(s)
Alkaloids/chemistry , Alkaloids/chemical synthesis , Indoles/chemistry , Iron/chemistry , Quinolines/chemistry , Quinolines/chemical synthesis , Catalysis , Chemistry Techniques, Synthetic
SELECTION OF CITATIONS
SEARCH DETAIL
...