Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 927: 172006, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554978

ABSTRACT

Grasslands account for approximately one-third of the global terrestrial carbon stocks. However, a limited understanding of the impact of grazing exclusion on carbon storage in grassland ecosystems hinders progress towards restoring overgrazed grasslands and promoting carbon sequestration. In this study, we conducted a comprehensive meta-analysis to investigate the effects of grazing exclusion on aboveground biomass (AGB) and soil organic carbon (SOC) in four grasslands: alpine grasslands (AP), tropical savannas (TS), temperate subhumid grasslands (TG), and a semi-desert steppe (SD). Our meta-analysis indicated that grazing exclusion significantly enhanced carbon sequestration in grassland ecosystems, and the benefits of carbon sequestration were most pronounced in the AP, followed by the TG, SD, and TS. Grazing exclusion duration (DUR) was a significant factor associated with the response of aboveground biomass (AGB) and soil organic carbon (SOC) to grazing exclusion. Moreover, the relationships between AGB and DUR were nonlinear, with existence thresholds of 18, 21, 12, 19, and 23 years in global grasslands (ALL), AP, TS, TG, and SD, respectively. However, the relationship between SOC and DUR was linear, with SOC continuing to increase as DUR increased (up to 40 years). The multi-objective optimization indicated that the optimal duration of grazing exclusion for grassland carbon sequestration was 18-20, 21-23, 12-14, 19-21, and 23-25 years for ALL, AP, TS, TG, and SD, respectively. Our study contributes to the enhancement of grazing management and offers better options for increasing carbon sequestration in grasslands.


Subject(s)
Biomass , Carbon Sequestration , Carbon , Grassland , Soil , Soil/chemistry , Carbon/analysis , Herbivory , Animals
2.
Glob Chang Biol ; 29(24): 7102-7116, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37837281

ABSTRACT

Global warming has significantly affected terrestrial ecosystems. Biomass and C:N:P stoichiometry of plants and soil is crucial for enhancing plant productivity, improving human nutrition, and regulating biogeochemical cycles. However, the effect of warming on the biomass and C:N:P stoichiometry of different components (plant, leaf, stem, root, litter, soil, and microbial biomass) in various terrestrial ecosystems remains uncertain. We conducted a comprehensive meta-analysis to investigate the global patterns of biomass and C:N:P stoichiometry responses to warming, as well as interaction relationships based on 1399 paired observations from 105 warming studies. Results indicated that warming had a significant impact on various aspects of plant growth, including an increase in plant biomass (+16.55%), plant C:N ratio (+4.15%), leaf biomass (+16.78%), stem biomass (+23.65%), root biomass (+22.00%), litter C:N ratio (+9.54%) and soil C:N ratio (+5.64%). However, it also decreased stem C:P ratio (-23.34%), root C:P ratio (-12.88%), soil N:P ratio (-14.43%) and soil C:P ratio (-16.33%). The magnitude of warming was the primary drivers of changes of biomass and C:N:P stoichiometry. By establishing the general response curves of changes in biomass and C:N:P ratios with increasing temperature, we demonstrated that warming effect on plant, root, and litter biomass shifted from negative to positive, whereas that on leaf and stem biomass changed from positive to negative as temperature increased. Additionally, the effect of warming on root C:N ratio, root biomass, and microbial biomass N:P ratios shifted from positive to negative, whereas the effects on plant N:P, leaf N:P, leaf C:P, root N:P ratios, and microbial biomass C:N ratio changed from negative to positive with increasing temperature. Our research can help assess plant productivity and optimize ecosystem stoichiometry precisely in the context of global warming.


Subject(s)
Ecosystem , Global Warming , Humans , Biomass , Nitrogen/analysis , Plants , Soil , Carbon
3.
Sci Total Environ ; 867: 161403, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36621506

ABSTRACT

A large number of individual studies and meta-analyses have shown that microplastics (MPs) affect soil ecosystems. However, the effects of different concentrations and types of MPs on soil ecosystem are still unclear. Here, a comprehensive meta-analysis was performed to examine the responses of 19 variables, associated with soil properties, microbes, enzymes, and fauna, to MPs, based on 114 peer-reviewed studies. The results showed that the addition of MPs significantly reduced the soil organic carbon (SOC), total nitrogen (TN), NH4+-N, pH, and diversity of bacteria, and increased the dissolved organic carbon (DOC), diversity of fungi and enzyme activities, especially enzymes related to the biogeochemical cycle. We further discussed that soil MPs exerted negative effects on soil fauna, including survival, growth, and reproduction, and that the concentration of MPs, rather than the type, was the biggest driving factor causing the toxicity of MPs affecting soil animals. More importantly, the concentrations of MPs were the main factor affecting the DOC, TN, NO3--N, total phosphorus (TP), available phosphorus (AP), and diversity of fungi, whereas the types of MPs were the main factors reflected in the SOC, NH4+-N, pH, diversity of bacteria, and enzyme activities. This study aimed to evaluate the response of soil ecosystems to the different concentrations and types of MPs, and the largest driving factor for the toxicity of MPs.


Subject(s)
Ecosystem , Microplastics , Animals , Plastics , Soil/chemistry , Carbon , Nitrogen , Phosphorus , Bacteria
4.
Front Plant Sci ; 12: 821954, 2021.
Article in English | MEDLINE | ID: mdl-35069673

ABSTRACT

Alpine grassland is the main ecosystem on the Qinghai-Tibet Plateau (QTP). Degradation and restoration of alpine grassland are related to ecosystem function and production, livelihood, and wellbeing of local people. Although a large number of studies research degraded alpine grassland, there are debates about degradation patterns of alpine grassland in different areas and widely applicable ecological restoration schemes due to the huge area of the QTP. In this study, we used the meta-analysis method to synthesize 80 individual published studies which were conducted to examine aboveground and underground characteristics in non-degradation (ND), light degradation (LD), moderate degradation (MD), heavy degradation (HD), and extreme degradation (ED) of alpine grassland on the QTP. Results showed that aboveground biomass (AGB), belowground biomass (BGB), Shannon-Wiener index (H'), soil moisture (SM), soil organic carbon (SOC), soil total nitrogen (TN), and available nitrogen (AN) gradually decreased along the degradation gradient, whereas soil bulk density (BD) and soil pH gradually increased. In spite of a tendency to soil desertification, losses of other soil nutrients and reduction of enzymes, there was no linear relationship between the variations with degradation gradient. Moreover, the decreasing extent of TN was smaller in areas with higher precipitation and temperature, and the decreasing extent of AGB, SOC, and TN was larger in areas with a higher extent of corresponding variables in the stage of ND during alpine grassland degradation. These findings suggest that in areas with higher precipitation and temperature, reseeding and sward cleavage can be used for restoration on degraded alpine grassland. Fencing and fertilization can be used for alpine grassland restoration in areas with lower precipitation and temperature. Microbial enzymes should not be used to restore degraded alpine grassland on a large scale on the QTP without detailed investigation and analysis. Future studies should pay more attention to the effects of climate factors on degradation processes and specific ecological restoration strategies in different regions of the QTP.

5.
Front Plant Sci ; 12: 827618, 2021.
Article in English | MEDLINE | ID: mdl-35111189

ABSTRACT

Ignoring the responses of local households to ecological protection policies can not only seriously limit sustainable development of the alpine grassland ecosystem, but also not improve livelihood on the Qinghai-Tibetan Plateau (QTP). It is of vital importance to clearly understand coupling feedback and trigger between household decision-making of local herdsmen with the implementation of ecological protection policies. We selected Sanjiangyuan National Park (SNP) as the study area which was in the hinterland of the QTP and the first national park in China. We used the global rangeland (G-Range) model to simulate alpine grassland changes and DEcisions under Conditions of Uncertainty by Modeled Agents (DECUMA) model to identify household decision-making of local herdsmen. Results showed that: (1) distribution of livestock density was basically consistent with the distribution of habitat suitability of local households in the SNP; (2) more than half of the uneducated households (52 and 70%) opposed the eco-compensation and eco-migration policies; (3) most of the households (53.7%) never traded livestock for maintaining their livelihood; and (4) When local households owed 65,000 yuan (≈10,000 dollars) in debts, as the critical value (trigger), they traded livestock to support their livelihood. We suggest that feedback and trigger of household decision-making should be fully considered by managers of national park and policymakers of local governments in planning ecological protection policies to maintain sustainable development of alpine grassland, which is of practical significance to long-term conservation and sustainable utilization of natural resources in the SNP.

SELECTION OF CITATIONS
SEARCH DETAIL
...