Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1102174, 2023.
Article in English | MEDLINE | ID: mdl-36866371

ABSTRACT

The cultivated Peanut (Arachis hypogaea L.), an important oilseed and edible legume, are widely grown worldwide. The R2R3-MYB transcription factor, one of the largest gene families in plants, is involved in various plant developmental processes and responds to multiple stresses. In this study we identified 196 typical R2R3-MYB genes in the genome of cultivated peanut. Comparative phylogenetic analysis with Arabidopsis divided them into 48 subgroups. The motif composition and gene structure independently supported the subgroup delineation. Collinearity analysis indicated polyploidization, tandem, and segmental duplication were the main driver of the R2R3-MYB gene amplification in peanut. Homologous gene pairs between the two subgroups showed tissue specific biased expression. In addition, a total of 90 R2R3-MYB genes showed significant differential expression levels in response to waterlogging stress. Furthermore, we identified an SNP located in the third exon region of AdMYB03-18 (AhMYB033) by association analysis, and the three haplotypes of the SNP were significantly correlated with total branch number (TBN), pod length (PL) and root-shoot ratio (RS ratio), respectively, revealing the potential function of AdMYB03-18 (AhMYB033) in improving peanut yield. Together, these studies provide evidence for functional diversity in the R2R3-MYB genes and will contribute to understanding the function of R2R3-MYB genes in peanut.

2.
Front Genet ; 13: 939255, 2022.
Article in English | MEDLINE | ID: mdl-36134030

ABSTRACT

Plants usually respond to the external environment by initiating a series of signal transduction processes mediated by protein kinases, especially calcineurin B-like protein-interacting protein kinases (CIPKs). In this study, 54 CIPKs were identified in the peanut genome, of which 26 were from cultivated species (named AhCIPKs) and 28 from two diploid progenitors (Arachis duranensis-AdCIPKs and Arachis ipaensis-AiCIPKs). Evolution analysis revealed that the 54 CIPKs were composed of two different evolutionary branches. The CIPK members were unevenly distributed at different chromosomes. Synteny analysis strongly indicated that whole-genome duplication (allopolyploidization) contributed to the expansion of CIPK. Comparative genomics analysis showed that there was only one common collinear CIPK pairs among peanut, Arabidopsis, rice, grape, and soybean. The prediction results of cis-acting elements showed that AhCIPKs, AdCIPKs, and AiCIPKs contained different proportions of transcription factor binding motifs involved in regulating plant growth, abiotic stress, plant hormones, and light response elements. Spatial expression profiles revealed that almost all AhCIPKs had tissue-specific expression patterns. Furthermore, association analysis identified one polymorphic site in AdCIPK12 (AhCIPK11), which was significantly associated with pod length, seed length, hundred seed weight, and shoot root ratio. Our results provide valuable information of CIPKs in peanut and facilitate better understanding of their biological functions.

3.
Front Genet ; 13: 821163, 2022.
Article in English | MEDLINE | ID: mdl-35356435

ABSTRACT

Cystathionine γ-synthase (CGS), methionine γ-lyase (MGL), cystathionine ß-lyase (CBL) and cystathionine γ-lyase (CGL) share the Cys_Met_Meta_PP domain and play important roles in plant stress response and development. In this study, we defined the genes containing the Cys_Met_Meta_PP domain (PF01053.20) as CBL-like genes (CBLL). Twenty-nine CBLL genes were identified in the peanut genome, including 12 from cultivated peanut and 17 from wild species. These genes were distributed unevenly at the ends of different chromosomes. Evolution, gene structure, and motif analysis revealed that CBLL proteins were composed of five different evolutionary branches. Chromosome distribution pattern and synteny analysis strongly indicated that whole-genome duplication (allopolyploidization) contributed to the expansion of CBLL genes. Comparative genomics analysis showed that there were three common collinear CBLL gene pairs among peanut, Arabidopsis, grape, and soybean, but no collinear CBLL gene pairs between peanut and rice. The prediction results of cis-acting elements showed that AhCBLLs, AdCBLLs, and AiCBLLs contained different proportions of plant growth, abiotic stress, plant hormones, and light response elements. Spatial expression profiles revealed that almost all AhCBLLs had significantly higher expression in pods and seeds. All AhCBLLs could respond to heat stress, and some of them could be rapidly induced by cold, salt, submergence, heat and drought stress. Furthermore, one polymorphic site in AiCBLL7 was identified by association analysis which was closely associated with pod length (PL), pod width (PW), hundred pod weight (HPW) and hundred seed weight (HSW). The results of this study provide a foundation for further research on the function of the CBLL gene family in peanut.

4.
BMC Genomics ; 22(1): 276, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33863285

ABSTRACT

BACKGROUND: Stem rot caused by Sclerotium rolfsii is a very important soil-borne disease of peanut. S. rolfsii is a necrotrophic plant pathogenic fungus with an extensive host range and worldwide distribution. It can infect peanut stems, roots, pegs and pods, leading to varied yield losses. S. rolfsii strains GP3 and ZY collected from peanut in different provinces of China exhibited a significant difference in aggressiveness on peanut plants by artificial inoculation test. In this study, de-novo genome sequencing of these two distinct strains was performed aiming to reveal the genomic basis of difference in aggressiveness. RESULTS: Scleotium rolfsii strains GP3 and ZY, with weak and high aggressiveness on peanut plants, exhibited similar growth rate and oxalic acid production in laboratory. The genomes of S. rolfsii strains GP3 and ZY were sequenced by Pacbio long read technology and exhibited 70.51 Mb and 70.61 Mb, with contigs of 27 and 23, and encoded 17,097 and 16,743 gene models, respectively. Comparative genomic analysis revealed that the pathogenicity-related gene repertoires, which might be associated with aggressiveness, differed between GP3 and ZY. There were 58 and 45 unique pathogen-host interaction (PHI) genes in GP3 and ZY, respectively. The ZY strain had more carbohydrate-active enzymes (CAZymes) in its secretome than GP3, especially in the glycoside hydrolase family (GH), the carbohydrate esterase family (CBM), and the polysaccharide lyase family (PL). GP3 and ZY also had different effector candidates and putative secondary metabolite synthetic gene clusters. These results indicated that differences in PHI, secreted CAZymes, effectors and secondary metabolites may play important roles in aggressive difference between these two strains. CONCLUSIONS: The data provided a further understanding of the S. rolfsii genome. Genomic comparison provided clues to the difference in aggressiveness of S. rolfsii strains.


Subject(s)
Arachis/genetics , Arachis/microbiology , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing/methods , Host-Pathogen Interactions , Plant Diseases/microbiology , Arachis/immunology , Basidiomycota , China , Genomics , Plant Diseases/immunology
5.
BMC Plant Biol ; 20(1): 161, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32293272

ABSTRACT

BACKGROUND: Coat color determines both appearance and nutrient quality of peanut. White seed coat in peanut can enhance the processing efficiency and quality of peanut oil. An integrative analysis of transcriptomes, metabolomes and histocytology was performed on wsc mutant and its wild type to investigate the regulatory mechanisms underlying color pigmentation. RESULT: Metabolomes revealed flavonoids were redirected in wsc, while multi-omics analyses of wsc mutant seeds and testae uncovered WSC influenced the flavonoids biosynthesis in testa as well as suberin formation, glycolysis, the TCA cycle and amino acid metabolism. The mutation also enhanced plant hormones synthesis and signaling. Further, co-expression analysis showed that FLS genes co-expressed with MBW complex member genes. Combining tissue expression patterns, genetic analyses, and the annotation of common DEGs for these three stages revealed that three testa specific expressed candidate genes, Araip.M7RY3, Aradu.R8PMF and Araip.MHR6K were likely responsible for the white testa phenotype. WSC might be regulated expression competition between FLS and DFR by controlling hormone synthesis and signaling as well as the MBW complex. CONCLUSIONS: The results of this study therefore provide both candidate genes and novel approaches that can be applied to improve peanut with desirable seed coat color and flavonoid quality.


Subject(s)
Arachis/genetics , Arachis/metabolism , Flavonoids/metabolism , Brassinosteroids/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Indoleacetic Acids/metabolism , Metabolome , Oxylipins/metabolism , Phenotype , Pigmentation/genetics , Plant Growth Regulators/metabolism , Transcriptome
6.
3 Biotech ; 10(3): 130, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32154043

ABSTRACT

In this study, we reported the genome-wide analysis of the whole sugar transporter gene family of a legume species, peanut (Arachis hypogaea L.), including the chromosome locations, gene structures, phylogeny, expression patterns, as well as comparative genomic analysis with Arabidopsis, rice, grape, and soybean. A total of 76 AhMST genes (AhMST1-76) were identified from the peanut genome and located unevenly in 20 chromosomes. Phylogeny analysis indicated that the AhMSTs can be divided into eight groups including two undefined peanut-specific groups. Transcriptional profiles revealed that many AhMST genes showed tissue-specific expression, the majority of the AhMST genes mainly expressed in sink organs and floral organ of peanut. Chromosome distribution pattern and synteny analysis strongly indicated that genome-wide segmental and tandem duplication contributed to the expansion of peanut MST genes. Four common orthologs (AhMST9, AhMST13, AhMST40, and AhMST43) between peanut and the other four species were identified by comparative genomic analysis, which might play important roles in maintaining the growth and development of plant. Furthermore, four polymorphic sites in AhMST11, AhMST13, and AhMST60 were significantly correlated with hundred pod weight (HPW) and hundred seed weight (HSW) by association analysis. In a word, these results will provide new insights for understanding the functions of AhMST family members to sugar transporting and the potential for yield improvement in peanut.

7.
BMC Genomics ; 20(1): 51, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30651065

ABSTRACT

BACKGROUND: Plant basic leucine zipper (bZIP) transcription factors play crucial roles in plant growth, development, and abiotic stress responses. However, systematic investigation and analyses of the bZIP gene family in peanut are lacking in spite of the availability of the peanut genome sequence. RESULTS: In this study, we identified 50 and 45 bZIP genes from Arachis duranensis and A. ipaensis genomes, respectively. Phylogenetic analysis showed that Arachis bZIP genes were classified into nine groups, and these clusters were supported by several group-specific features, including exon/intron structure, intron phases, MEME motifs, and predicted binding site structure. We also identified possible variations in DNA-binding-site specificity and dimerization properties among different Arachis bZIPs by inspecting the amino acid residues at some key sites. Our analysis of the evolutionary history analysis indicated that segmental duplication, rather than tandem duplication, contributed greatly to the expansion of this gene family, and that most Arachis bZIPs underwent strong purifying selection. Through RNA-seq and quantitative real-time PCR (qRT-PCR) analyses, the co-expressed, differentially expressed and several well-studied homologous bZIPs were identified during seed development stages in peanut. We also used qRT-PCR to explore changes in bZIP gene expression in response to salt-treatment, and many candidate bZIPs in groups A, B, and S were proven to be associated with the salt-stress response. CONCLUSIONS: This study have conducted a genome-wide identification, characterization and expression analysis of bZIP genes in Arachis genomes. Our results provide insights into the evolutionary history of the bZIP gene family in peanut and the funcntion of Arachis bZIP genes during seed development and in response to salt stress.


Subject(s)
Arachis/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Salt Stress/genetics , Seeds/growth & development , Seeds/genetics , Arachis/physiology , Basic-Leucine Zipper Transcription Factors/genetics , Binding Sites , Gene Duplication , Gene Expression Regulation, Developmental , Genes, Plant , Introns/genetics , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Multimerization
8.
Front Plant Sci ; 9: 827, 2018.
Article in English | MEDLINE | ID: mdl-29997635

ABSTRACT

High-density genetic maps (HDGMs) are very useful for genomic studies and quantitative trait loci (QTL) mapping. However, the low frequency of DNA polymorphisms in peanut has limited the quantity of available markers and hindered the construction of a HDGM. This study generated a peanut genetic map with the highest number of high-quality SNPs based on specific locus amplified fragment sequencing (SLAF-seq) technology and a newly constructed RIL population ("ZH16" × "sd-H1"). The constructed HDGM included 3,630 SNP markers belonging to 2,636 bins on 20 linkage groups (LGs), and it covers 2,098.14 cM in length, with an average marker distance of 0.58 cM. This HDGM was applied for the following collinear comparison, scaffold anchoring and analysis of genomic characterization including recombination rates and segregation distortion in peanut. For QTL mapping of investigated 14 yield-related traits, a total of 62 QTLs were detected on 12 chromosomes across 3 environments, and the co-localization of QTLs was observed for these traits which were significantly correlated on phenotype. Two stable co-located QTLs for seed- and pod-related traits were significantly identified in the chromosomal end of B06 and B07, respectively. The construction of HDGM and QTL analysis for yield-related traits in this study provide useful information for fine mapping and functional analysis of genes as well as molecular marker-assisted breeding.

9.
Plant Physiol Biochem ; 125: 116-125, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29438896

ABSTRACT

Although peanut (Arachis hypogaea L.) is one of the most important edible oil crops globally, pigments present in the testa influence both the processing efficiency and the quality of the oil. In peanut, polymeric phenolic compounds are present in the episperm rather than in the endothelium and their levels increase during ripening; therefore, to better understand testa development, and especially the accumulation of pigments, RNA-Seq was applied to elucidate the mechanisms underlying the regulation of peanut testae at three different developmental stages (i.e., at 20 days after flowering - 20DAF - and at 40DAF and 60DAF). A total of 5452 differentially expressed unigenes (DEGs) were obtained encompassing these three stages; comparative results showed that phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, and plant hormone signal transduction comprised the principal KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways expressed during peanut testa development. Further studies revealed that the expression patterns of the flavonoid biosynthesis pathway genes PAL, C4H, CHS, and CHI (early biosynthetic genes - EBGs) were consistent with the accumulation of testa pigments. Thus, the results of this study demonstrate that EBGs, as well as the homologs of AtMYB111 (i.e., c35101_g4 and c37398_g2), are likely the principal regulators of testa pigment accumulation; the gene database assembled here is therefore a sequencing resource for future research and provides a foundation for understanding the regulation of pink testa pigmentation in peanuts.


Subject(s)
Arachis/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/physiology , Pigments, Biological/biosynthesis , Plant Proteins/biosynthesis , Arachis/genetics
10.
Front Plant Sci ; 8: 1900, 2017.
Article in English | MEDLINE | ID: mdl-29170673

ABSTRACT

Pod size is the major yield component and a key target trait that is selected for in peanut breeding. However, although numerous quantitative trait loci (QTLs) for peanut pod size have been described, the molecular mechanisms underlying the development of this characteristic remain elusive. A peanut mutant with a narrower pod was developed in this study using ethyl methanesulfonate (EMS) mutagenesis and designated as the "pod width" mutant line (pw). The fresh pod weight of pw was only about 40% of that seen in the wild-type (WT) Zhonghua16, while the hull and seed filling of the mutant both also developed at earlier stages. Pods from both pw and WT lines were sampled 20, 40, and 60 days after flowering (DAF) and used for RNA-Seq analysis; the results revealed highly differentially expressed lignin metabolic pathway genes at all three stages, but especially at DAF 20 and DAF 40. At the same time, expression of genes related to auxin signal transduction was found to be significantly repressed during the pw early pod developmental stage. A genome-wide comparative analysis of expression profiles revealed 260 differentially expressed genes (DEGs) across all three stages, and two candidate genes, c26901_g1 (CAD) and c37339_g1 (ACS), responsible for pod width were identified by integrating expression patterns and function annotation of the common DEGs within the three stages. Taken together, the information provided in this study illuminates the processes underlying peanut pod development, and will facilitate further identification of causal genes and the development of improved peanut varieties with higher yields.

11.
Sci Rep ; 7(1): 9659, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851929

ABSTRACT

Aflatoxin contamination, caused by fungal pathogen Aspergillus flavus, is a major quality and health problem delimiting the trade and consumption of groundnut (Arachis hypogaea L.) worldwide. RNA-seq approach was deployed to understand the host-pathogen interaction by identifying differentially expressed genes (DEGs) for resistance to in-vitro seed colonization (IVSC) at four critical stages after inoculation in J 11 (resistant) and JL 24 (susceptible) genotypes of groundnut. About 1,344.04 million sequencing reads have been generated from sixteen libraries representing four stages in control and infected conditions. About 64% and 67% of quality filtered reads (1,148.09 million) were mapped onto A (A. duranensis) and B (A. ipaёnsis) subgenomes of groundnut respectively. About 101 million unaligned reads each from J 11 and JL 24 were used to map onto A. flavus genome. As a result, 4,445 DEGs including defense-related genes like senescence-associated proteins, resveratrol synthase, 9s-lipoxygenase, pathogenesis-related proteins were identified. In A. flavus, about 578 DEGs coding for growth and development of fungus, aflatoxin biosynthesis, binding, transport, and signaling were identified in compatible interaction. Besides identifying candidate genes for IVSC resistance in groundnut, the study identified the genes involved in host-pathogen cross-talks and markers that can be used in breeding resistant varieties.


Subject(s)
Arachis/immunology , Arachis/microbiology , Aspergillus flavus/growth & development , Aspergillus flavus/immunology , Host-Pathogen Interactions , Gene Expression Profiling , Sequence Analysis, RNA
12.
Mol Breed ; 37(2): 17, 2017.
Article in English | MEDLINE | ID: mdl-28216998

ABSTRACT

The genetic architecture determinants of yield traits in peanut (Arachis hypogaea L.) are poorly understood. In the present study, an effort was made to map quantitative trait loci (QTLs) for yield traits using recombinant inbred lines (RIL). A genetic linkage map was constructed containing 609 loci, covering a total of 1557.48 cM with an average distance of 2.56 cM between adjacent markers. The present map exhibited good collinearity with the physical map of diploid species of Arachis. Ninety-two repeatable QTLs were identified for 11 traits including height of main stem, total branching number, and nine pod- and seed-related traits. Of the 92 QTLs, 15 QTLs were expressed across three environments and 65 QTLs were newly identified. Twelve QTLs for the height of main stem and the pod- and seed-related traits explaining more than 10 % of phenotypic variation showed a great potential for marker-assisted selection in improving these traits. The trait-by-trait meta-analysis revealed 33 consensus QTLs. The consensus QTLs and other QTLs were further integrated into 29 pleiotropic unique QTLs with the confidence interval of 1.86 cM on average. The significant co-localization of QTLs was consistent with the significant phenotypic correlations among these traits. The complexity of the genetic architecture of yield traits was demonstrated. The present QTLs for pod- and seed-related traits could be the most fundamental genetic factors contributing to the yield traits in peanut. The results provide a good foundation for fine mapping, cloning and designing molecular breeding of favorable genes in peanut.

13.
Front Plant Sci ; 7: 1491, 2016.
Article in English | MEDLINE | ID: mdl-27790222

ABSTRACT

Seed-coat cracking and undesirable color of seed coat highly affects external appearance and commercial value of peanuts (Arachis hypogaea L.). With an objective to find genetic solution to the above problems, a peanut mutant with cracking and brown colored seed coat (testa) was identified from an EMS treated mutant population and designated as "peanut seed coat crack and brown color mutant line (pscb)." The seed coat weight of the mutant was almost twice of the wild type, and the germination time was significantly shorter than wild type. Further, the mutant had lower level of lignin, anthocyanin, proanthocyanidin content, and highly increased level of melanin content as compared to wild type. Using RNA-Seq, we examined the seed coat transcriptome in three stages of seed development in the wild type and the pscb mutant. The RNA-Seq analysis revealed presence of highly differentially expressed phenylpropanoid and flavonoid pathway genes in all the three seed development stages, especially at 40 days after flowering (DAF40). Also, the expression of polyphenol oxidases and peroxidase were found to be activated significantly especially in the late seed developmental stage. The genome-wide comparative study of the expression profiles revealed 62 differentially expressed genes common across all the three stages. By analyzing the expression patterns and the sequences of the common differentially expressed genes of the three stages, three candidate genes namely c36498_g1 (CCoAOMT1), c40902_g2 (kinesin), and c33560_g1 (MYB3) were identified responsible for seed-coat cracking and brown color phenotype. Therefore, this study not only provided candidate genes but also provided greater insights and molecular genetic control of peanut seed-coat cracking and color variation. The information generated in this study will facilitate further identification of causal gene and diagnostic markers for breeding improved peanut varieties with smooth and desirable seed coat color.

14.
BMC Plant Biol ; 16: 54, 2016 Feb 27.
Article in English | MEDLINE | ID: mdl-26922489

ABSTRACT

BACKGROUND: Aflatoxin contamination caused by Aspergillus flavus in peanut (Arachis hypogaea) including in pre- and post-harvest stages seriously affects industry development and human health. Even though resistance to aflatoxin production in post-harvest peanut has been identified, its molecular mechanism has been poorly understood. To understand the mechanism of peanut response to aflatoxin production by A. flavus, RNA-seq was used for global transcriptome profiling of post-harvest seed of resistant (Zhonghua 6) and susceptible (Zhonghua 12) peanut genotypes under the fungus infection and aflatoxin production stress. RESULT: A total of 128.72 Gb of high-quality bases were generated and assembled into 128, 725 unigenes (average length 765 bp). About 62, 352 unigenes (48.43%) were annotated in the NCBI non-redundant protein sequences, NCBI non-redundant nucleotide sequences, Swiss-Prot, KEGG Ortholog, Protein family, Gene Ontology, or eukaryotic Ortholog Groups database and more than 93% of the unigenes were expressed in the samples. Among obtained 30, 143 differentially expressed unigenes (DEGs), 842 potential defense-related genes, including nucleotide binding site-leucine-rich repeat proteins, polygalacturonase inhibitor proteins, leucine-rich repeat receptor-like kinases, mitogen-activated protein kinase, transcription factors, ADP-ribosylation factors, pathogenesis-related proteins and crucial factors of other defense-related pathways, might contribute to peanut response to aflatoxin production. Notably, DEGs involved in phenylpropanoid-derived compounds biosynthetic pathway were induced to higher levels in the resistant genotype than in the susceptible one. Flavonoid, stilbenoid and phenylpropanoid biosynthesis pathways were enriched only in the resistant genotype. CONCLUSIONS: This study provided the first comprehensive analysis of transcriptome of post-harvest peanut seeds in response to aflatoxin production, and would contribute to better understanding of molecular interaction between peanut and A. flavus. The data generated in this study would be a valuable resource for genetic and genomic studies on crops resistance to aflatoxin contamination.


Subject(s)
Aflatoxins , Arachis/genetics , Aspergillus flavus/physiology , Plant Diseases/genetics , Arachis/microbiology , Crops, Agricultural/genetics , Genes, Plant , Plant Diseases/microbiology , Seeds/genetics , Transcriptome
15.
Toxins (Basel) ; 8(2): 46, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26891328

ABSTRACT

In the Aspergillus flavus (A. flavus)-peanut pathosystem, development and metabolism of the fungus directly influence aflatoxin contamination. To comprehensively understand the molecular mechanism of A. flavus interaction with peanut, RNA-seq was used for global transcriptome profiling of A. flavus during interaction with resistant and susceptible peanut genotypes. In total, 67.46 Gb of high-quality bases were generated for A. flavus-resistant (af_R) and -susceptible peanut (af_S) at one (T1), three (T2) and seven (T3) days post-inoculation. The uniquely mapped reads to A. flavus reference genome in the libraries of af_R and af_S at T2 and T3 were subjected to further analysis, with more than 72% of all obtained genes expressed in the eight libraries. Comparison of expression levels both af_R vs. af_S and T2 vs. T3 uncovered 1926 differentially expressed genes (DEGs). DEGs associated with mycelial growth, conidial development and aflatoxin biosynthesis were up-regulated in af_S compared with af_R, implying that A. flavus mycelia more easily penetrate and produce much more aflatoxin in susceptible than in resistant peanut. Our results serve as a foundation for understanding the molecular mechanisms of aflatoxin production differences between A. flavus-R and -S peanut, and offer new clues to manage aflatoxin contamination in crops.


Subject(s)
Arachis/microbiology , Aspergillus flavus/genetics , Gene Expression Regulation, Fungal , Host-Pathogen Interactions/genetics , Aspergillus flavus/physiology , Genome, Fungal , Genomics , RNA, Fungal/analysis , Seeds/microbiology , Sequence Analysis, RNA
16.
BMC Genomics ; 16: 1053, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26651343

ABSTRACT

BACKGROUND: Plant bZIP proteins characteristically harbor a highly conserved bZIP domain with two structural features: a DNA-binding basic region and a leucine (Leu) zipper dimerization region. They have been shown to be diverse transcriptional regulators, playing crucial roles in plant development, physiological processes, and biotic/abiotic stress responses. Despite the availability of six completely sequenced legume genomes, a comprehensive investigation of bZIP family members in legumes has yet to be presented. RESULTS: In this study, we identified 428 bZIP genes encoding 585 distinct proteins in six legumes, Glycine max, Medicago truncatula, Phaseolus vulgaris, Cicer arietinum, Cajanus cajan, and Lotus japonicus. The legume bZIP genes were categorized into 11 groups according to their phylogenetic relationships with genes from Arabidopsis. Four kinds of intron patterns (a-d) within the basic and hinge regions were defined and additional conserved motifs were identified, both presenting high group specificity and supporting the group classification. We predicted the DNA-binding patterns and the dimerization properties, based on the characteristic features in the basic and hinge regions and the Leu zipper, respectively, which indicated that some highly conserved amino acid residues existed across each major group. The chromosome distribution and analysis for WGD-derived duplicated blocks revealed that the legume bZIP genes have expanded mainly by segmental duplication rather than tandem duplication. Expression data further revealed that the legume bZIP genes were expressed constitutively or in an organ-specific, development-dependent manner playing roles in multiple seed developmental stages and tissues. We also detected several key legume bZIP genes involved in drought- and salt-responses by comparing fold changes of expression values in drought-stressed or salt-stressed roots and leaves. CONCLUSIONS: In summary, this genome-wide identification, characterization and expression analysis of legume bZIP genes provides valuable information for understanding the molecular functions and evolution of the legume bZIP transcription factor family, and highlights potential legume bZIP genes involved in regulating tissue development and abiotic stress responses.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Fabaceae/genetics , Genomics/methods , Plant Proteins/genetics , Basic-Leucine Zipper Transcription Factors/chemistry , Binding Sites , Cajanus/genetics , Chromosomes, Plant/genetics , Cicer/genetics , Fabaceae/classification , Gene Expression Profiling , Gene Expression Regulation, Plant , Lotus/genetics , Medicago truncatula/genetics , Multigene Family , Phylogeny , Plant Proteins/chemistry , Glycine max/genetics
17.
BMC Microbiol ; 15: 182, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26420172

ABSTRACT

BACKGROUND: Resveratrol has been reported as a natural phytoalexin that inhibits infection or the growth of certain fungi including Aspergillus flavus. Our previous research revealed that aflatoxin production in A. flavus was reduced in medium with resveratrol. To understand the molecular mechanism of the A. flavus response to resveratrol treatment, the high-throughput paired-end RNA-Seq was applied to analyze the transcriptomic profiles of A. flavus. RESULTS: In total, 366 and 87 genes of A. flavus were significantly up- and down- regulated, respectively, when the fungus was treated with resveratrol. Gene Ontology (GO) functional enrichment analysis revealed that 48 significantly differentially expressed genes were involved in 6 different terms. Most genes in the aflatoxin biosynthetic pathway genes cluster (#54) did not show a significant change when A. flavus was treated with resveratrol, but 23 of the 30 genes in the #54 cluster were down-regulated. The transcription of aflA and aflB was significantly suppressed under resveratrol treatment, resulting in an insufficient amount of the starter unit hexanoate for aflatoxin biosynthesis. In addition, resveratrol significantly increased the activity of antioxidative enzymes that destroy radicals, leading to decreased aflatoxin production. Moreover, stuA, fluG, flbC, and others genes involved in mycelial and conidial development were down-regulated, which disrupted the cell's orderly differentiation and blocked conidia formation and mycelia development. The transcripts of laeA and veA were slightly inhibited by resveratrol, which may partly decrease aflatoxin production and depress conidia formation. CONCLUSIONS: Resveratrol can affect the expression of A. flavus genes that are related to developmental and secondary metabolic processes, resulting in decreased aflatoxin production and conidia formation and could also cause abnormal mycelia development. These results provide insight into the transcriptome of A. flavus in response to resveratrol and a new clew for further study in regulation of aflatoxin biosynthesis in A. flavus.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus flavus/drug effects , Aspergillus flavus/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal/drug effects , High-Throughput Nucleotide Sequencing , Stilbenes/pharmacology , Aflatoxins/biosynthesis , Aspergillus flavus/growth & development , Mycelium/growth & development , Resveratrol , Spores, Fungal/growth & development
18.
Funct Integr Genomics ; 14(3): 467-77, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24902799

ABSTRACT

Ethylene-responsive factor (ERF) play an important role in regulating gene expression in plant development and response to stresses. In peanuts (Arachis hypogaea L.), which produce flowers aerially and pods underground, only a few ERF genes have been identified so far. This study identifies 63 ERF unigenes from 247,313 peanut EST sequences available in the NCBI database. The phylogeny, gene structures, and putative conserved motifs in the peanut ERF proteins were analysed. Comparative analysis revealed the absence of two subgroups (A1 and A3) of the ERF family in peanuts; only 10 subgroups were identified in peanuts compared to 12 subgroups in Arabidopsis and soybeans. AP2/ERF domains were found to be conserved among peanuts, Arabidopsis, and soybeans. Outside the AP2/ERF domain, many soybean-specific conserved motifs were also detected in peanuts. The expression analysis of ERF family genes representing each clade revealed differential expression patterns in response to biotic and abiotic stresses. Overexpression of AhERF008 influenced the root gravity of Arabidopsis, whereas overexpression of AhERF019 enhanced tolerance to drought, heat, and salt stresses in Arabidopsis. The information generated in this study will be helpful to further investigate the function of ERFs in plant development and stress response.


Subject(s)
Arachis/genetics , Plant Proteins/genetics , Plant Roots/genetics , Repressor Proteins/genetics , Arabidopsis/genetics , Arachis/metabolism , Gene Expression , Gene Expression Regulation, Plant , Genes, Plant , Organ Specificity , Phylogeny , Plant Proteins/metabolism , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Protein Structure, Tertiary , Repressor Proteins/metabolism , Salt Tolerance , Glycine max/genetics , Stress, Physiological
19.
J Integr Plant Biol ; 56(2): 159-69, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24237710

ABSTRACT

Association mapping is a powerful approach for exploring the molecular basis of phenotypic variations in plants. A peanut (Arachis hypogaea L.) mini-core collection in China comprising 298 accessions was genotyped using 109 simple sequence repeat (SSR) markers, which identified 554 SSR alleles and phenotyped for 15 agronomic traits in three different environments, exhibiting abundant genetic and phenotypic diversity within the panel. A model-based structure analysis assigned all accessions to three groups. Most of the accessions had the relative kinship of less than 0.05, indicating that there were no or weak relationships between accessions of the mini-core collection. For 15 agronomic traits in the peanut panel, generally the Q + K model exhibited the best performance to eliminate the false associated positives compared to the Q model and the general linear model-simple model. In total, 89 SSR alleles were identified to be associated with 15 agronomic traits of three environments by the Q + K model-based association analysis. Of these, eight alleles were repeatedly detected in two or three environments, and 15 alleles were commonly detected to be associated with multiple agronomic traits. Simple sequence repeat allelic effects confirmed significant differences between different genotypes of these repeatedly detected markers. Our results demonstrate the great potential of integrating the association analysis and marker-assisted breeding by utilizing the peanut mini-core collection.


Subject(s)
Agriculture , Arachis/genetics , Genetic Association Studies , Genetic Variation , Quantitative Trait, Heritable , Alleles , China , Environment , Microsatellite Repeats/genetics , Phenotype , Population Dynamics , Principal Component Analysis
20.
Planta ; 237(6): 1443-51, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23420309

ABSTRACT

OsERF3 is a transcriptional repressor with an ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif (F/LDLNxxP), which transcriptionally represses the ethylene emission and drought tolerance in rice. However, its molecular mechanism to explore repression function remains unknown. Here, we first revealed that the expression of OsERF3 was induced by drought, salt, ACC and ABA treatment. In addition, it showed a higher expression level in the root and sheath than that in the leaf. Then, we generated transgenic rice overexpressing full-length OsERF3 (OE) and its mutation of EAR motif with the A 680/C substitution (mEAR), respectively. The physiological analyses showed that mEAR lines showed better drought tolerance and more ethylene emission compared with those of OE lines and wild type plants. Consistent with our previous research, the expression of ethylene synthesis genes, including ACO2, ACS2, and ACS6 was down-regulated in OE lines. However, the repression of OsERF3 was eliminated in mEAR lines. Specifically, ACS2 was up-regulated in mEAR lines compared with that in OE lines and WT plants, suggesting that the Leu/Ala substitution within the EAR motif resulted in loss of repression of OsERF3. Thus, our data reveal that the EAR motif is required for OsERF3 to transcriptionally regulate the ethylene synthesis and drought tolerance in rice, providing new insight to the roles of ethylene-response factor proteins in regulating ethylene biosynthesis and stress response.


Subject(s)
Adaptation, Physiological/genetics , Droughts , Ethylenes/biosynthesis , Mutation/genetics , Oryza/physiology , Plant Proteins/chemistry , Plant Proteins/genetics , Adaptation, Physiological/drug effects , Amino Acid Motifs , Amino Acid Sequence , Dehydration , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Molecular Sequence Data , Oryza/drug effects , Oryza/genetics , Phylogeny , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Repressor Proteins/metabolism , Sequence Analysis, Protein , Structure-Activity Relationship , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...