Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(18): 28891-28899, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37710698

ABSTRACT

In this paper, the effects of optical power factors like laser power, the powers of the laser beams in the two arms of the optical system, and the power of the photodetector on laser-linewidth measurements are studied. From the experiments, it can be found that when the average optical input power for the photodetector is about 50% of its linear saturation power, the measured laser line width is a minimum. When the optical powers of the laser beams in the two arms are equal in short-delay self-homodyne system, the measured laser line width is narrowest. In the low output power range of the laser, its line width decreases with the increase in optical power. By comparing experiments, it can also be clear that the conventional measurement method is seriously affected by different noise types, which causes the measured line width to become wider and not change even if the laser linewidth changes. However, based on the short-delay coherent envelope method, the measured coherent envelope changes significantly when the laser line width changes slightly, and its corresponding laser-linewidth values are also clearly visible. It confirms the low noise and high resolution of the short-delay self-homodyne coherent-envelope laser-measurement method. The outcomes of this study can provide helpful information for precision ultra-narrow laser-linewidth measurements.

2.
Opt Express ; 31(13): 22189-22203, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37381299

ABSTRACT

We propose an all-fiber reflective sensing scheme to simultaneously measure temperature and strain. A length of polarization-maintaining fiber serves as the sensing element, and a piece of hollow-core fiber assists with introducing Vernier effect. Both theoretical deductions and simulative studies have demonstrated the feasibility of the proposed Vernier sensor. Experimental results have shown that the sensor can deliver sensitivities of -88.73 nm/°C and 1.61 nm/µÎµ for temperature and strain, respectively. Further, Both theoretical analyses and experimental results have suggested the capability of simultaneous measurement for such a sensor. Significantly, the proposed Vernier sensor not only presents high sensitivities, but also exhibits a simple structure, compact size and light weight, as well as demonstrates ease of fabrication and hence high repeatability, thus holding great promise for widespread applications in daily life and industry world.

3.
Appl Opt ; 61(7): 1791-1796, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35297860

ABSTRACT

We propose a precision measurement method of laser linewidth based on short-delay self-homodyne, using the second peak-valley difference (SPVD) feature of the coherent power spectrum to fit laser linewidth. The SPVD model of the self-homodyne coherent envelope spectrum was established. One-to-one correspondence among the values of SPVD, the delay length, and the laser linewidth was determined theoretically and through simulations, while the reliability and stability of the method was verified experimentally. By comparing the detected results, it is found that the fitted laser linewidth obtained by the self-homodyne system is closer to its true value than that obtained by the self-heterodyne system. Hence, the simpler structure of the short-delay self-homodyne coherent envelope laser linewidth measurement method proposed is expected to substitute the previous laser linewidth measurement method, including complex short-delay self-heterodyne coherent envelope laser linewidth measurement method and traditional self-homodyne/heterodyne laser linewidth measurement method, to achieve more precise laser linewidth value.

4.
Opt Express ; 29(8): 11570-11581, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33984934

ABSTRACT

The Vernier effect magnifies optical sensitivity by the superposition of two spectra with slightly shifted frequencies from a sensing interferometer (SIM) and a reference interferometer (RIM). In this study, we demonstrate that the Vernier effect can be obtained through a single interferometer, which detects the changed signal and provides an artificial reference spectrum (ARS) to be superposed with the changed signal spectrum. The ARS extracted by spatial frequency down-conversion of one sensing spectrum in the signal processing is not affected by environmental changes and can be detuned at an arbitrarily small amount with the measured signal spectrum. This approach is simpler and accurate and provides ultrahigh sensitivity. To validate the principle, a Mach-Zehnder (MZ) interferometer based on a dual-mode microfiber was designed for sensing the refractive index (RI) change magnification, and a high sensitivity of 71354.58 nm/refractive index unit (RIU) was obtained with good linearity.

5.
Opt Express ; 28(3): 4145-4155, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32122072

ABSTRACT

An ultrasensitive refractive index (RI) sensor based on enhanced Vernier effect is proposed, which consists of two cascaded fiber core-offset pairs. One pair functions as a Mach-Zehnder interferometer (MZI), the other with larger core offset as a low-finesse Fabry-Perot interferometer (FPI). In traditional Vernier-effect based sensors, an interferometer insensitive to environment change is used as sensing reference. Here in the proposed sensor, interference fringes of the MZI and the FPI shift to opposite directions as ambient RI varies, and to the same direction as surrounding temperature changes. Thus, the envelope of superimposed fringe manifests enhanced Vernier effect for RI sensing while reduced Vernier effect for temperature change. As a result, an ultra-high RI sensitivity of -87261.06 nm/RIU is obtained near the RI of 1.33 with good linearity, while the temperature sensitivity is as low as 204.7 pm/ °C. The proposed structure is robust and of low cost. Furthermore, the proposed scheme of enhanced Vernier effect provides a new perspective and idea in other sensing field.

6.
Opt Express ; 24(24): 27614-27621, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27906332

ABSTRACT

We propose and successfully demonstrate a k-space linear and self-clocked wavelength scanning fiber laser source based on recirculating frequency shifting (RFS). The RFS is realized with a high speed electro-optic dual parallel Mach-Zehnder modulator operating at the state of carrier suppressed single sideband modulation. A gated short pulse is injected into an amplified RFS loop to generate the wavelength scanning pulse train. We find that the accumulation of in-band amplified spontaneous emission (ASE) noise over multiple scanning periods will saturate the erbium-doped fiber amplifier and impede the amplification to the pulse signal in the RFS loop. To overcome the degradation of temporal signal due to the accumulation of ASE noise over multiple scanning periods, we insert a modulated optical switch into the RFS loop to completely attenuate the in-band ASE noise at the end of each scanning period. The signal to noise ratio of the temporal pulsed signal is greatly enhanced. K-space linear and self-clocked wavelength scanning fiber laser sources in 6.1 nm/7.2 nm scanning range with 20 GHz/30 GHz frequency shifting are successfully demonstrated.

7.
Opt Express ; 24(17): 19814-23, 2016 Aug 22.
Article in English | MEDLINE | ID: mdl-27557257

ABSTRACT

Optical coherence tomography (OCT) is an attractive modality in biomedical imaging systems due to its non-invasive imaging character. Since the image quality of OCT may be limited by the decrease of transverse resolution away from the focus spot, working distance tunable probe can be a strategy to overcome such limitation and maintain high transverse resolution at different imaging depths. In this paper, a miniature, working distance-tunable in-fiber OCT probe is demonstrated. The influences of the graded index fiber (GIF) length as well as the air cavity length on the working distance and the transverse resolution are simulated and discussed. Experimental results prove that the working distance can be tuned freely from 337.31 µm to 22.28 µm, producing the transverse resolution from 13.86 µm to 3.6 µm, which are in good agreement with the simulated results. The application of the probe in an OCT system for imagining a standard USAF resolution target is investigated in detail. The best resolutions for the standard USAF resolution target imaging are 4.9 µm and 6.9 µm in horizontal and vertical direction, respectively.

8.
Opt Express ; 24(26): 29705-29713, 2016 Dec 26.
Article in English | MEDLINE | ID: mdl-28059354

ABSTRACT

A wavelength-tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier (NL-SOA) is proposed and experimentally demonstrated. The single-frequency operation is achieved based on the spectral narrowing effect resulted from the inverse four-wave mixing in a NL-SOA. By incorporating the NL-SOA in the fiber laser cavity, single-frequency lasing is achieved. The lasing frequency can be tuned by tuning the center wavelength of a tunable filter (TF) incorporated in the laser cavity. The proposed wavelength-tunable single-frequency fiber laser is experimentally evaluated. Stable single-frequency oscillation with a side-mode suppression ratio (SMSR) as high as 55 dB and a spectral linewidth of less than 10.1 kHz over a wavelength tuning range of as wide as 48 nm is demonstrated.

9.
Opt Express ; 21(10): 12874-80, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23736506

ABSTRACT

We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.


Subject(s)
Fiber Optic Technology/instrumentation , Lasers , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...