Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 58(15): 1429-1444.e6, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37321217

ABSTRACT

Bryophytes represent a sister to the rest of land plants. Despite their evolutionary importance and relatively simple body plan, a comprehensive understanding of the cell types and transcriptional states that underpin the temporal development of bryophytes has not been achieved. Using time-resolved single-cell RNA sequencing, we define the cellular taxonomy of Marchantia polymorpha across asexual reproduction phases. We identify two maturation and aging trajectories of the main plant body of M. polymorpha at single-cell resolution: the gradual maturation of tissues and organs along the tip-to-base axis of the midvein and the progressive decline of meristem activities in the tip along the chronological axis. Specifically, we observe that the latter aging axis is temporally correlated with the formation of clonal propagules, suggesting an ancient strategy to optimize allocation of resources to producing offspring. Our work thus provides insights into the cellular heterogeneity that underpins the temporal development and aging of bryophytes.


Subject(s)
Marchantia , Marchantia/cytology , Marchantia/physiology
2.
BMC Genomics ; 23(Suppl 1): 272, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35392802

ABSTRACT

BACKGROUND: Transcription factors (TFs) play central roles in regulating gene expression. With the rapid growth in the use of high-throughput sequencing methods, there is a need to develop a comprehensive data processing and analyzing framework for inferring influential TFs based on ChIP-seq/ATAC-seq datasets. RESULTS: Here, we introduce FindIT2 (Find Influential TFs and Targets), an R/Bioconductor package for annotating and processing high-throughput multi-omics data. FindIT2 supports a complete framework for annotating ChIP-seq/ATAC-seq peaks, identifying TF targets by the combination of ChIP-seq and RNA-seq datasets, and inferring influential TFs based on different types of data input. Moreover, benefited from the annotation framework based on Bioconductor, FindIT2 can be applied to any species with genomic annotations, which is particularly useful for the non-model species that are less well-studied. CONCLUSION: FindIT2 provides a user-friendly and flexible framework to generate results at different levels according to the richness of the annotation information of user's species. FindIT2 is compatible with all the operating systems and is released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor ( https://bioconductor.org/packages/devel/bioc/html/FindIT2.html ).


Subject(s)
Software , Transcription Factors , Chromatin Immunoprecipitation Sequencing , Genomics , High-Throughput Nucleotide Sequencing , Transcription Factors/genetics
3.
Dev Cell ; 57(4): 526-542.e7, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35063083

ABSTRACT

Shoot regeneration is mediated by the sequential action of two phytohormones, auxin and cytokinin. However, the chromatin regulatory landscapes underlying this dynamic response have not yet been studied. In this study, we jointly profiled chromatin accessibility, histone modifications, and transcriptomes to demonstrate that a high auxin/cytokinin ratio environment primes Arabidopsis shoot regeneration by increasing the accessibility of the gene loci associated with pluripotency and shoot fate determination. Cytokinin signaling not only triggers the commitment of the shoot progenitor at later stages but also allows chromatin to maintain shoot identity genes at the priming stage. Our analysis of transcriptional regulatory dynamics further identifies a catalog of regeneration cis-elements dedicated to cell fate transitions and uncovers important roles of BES1, MYC, IDD, and PIF transcription factors in shoot regeneration. Our results, thus, provide a comprehensive resource for studying cell reprogramming in plants and provide potential targets for improving future shoot regeneration efficiency.


Subject(s)
Chromatin/metabolism , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Regeneration/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Differentiation/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Shoots/metabolism , Transcription Factors/metabolism , Transcriptome/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...