Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38591504

ABSTRACT

A new strategy for the high-throughput characterization of the mechanical homogeneity of metallurgical materials is proposed. Based on the principle of hydrostatic transmission and the synergistic analysis of the composition, microstructure, defects, and surface profile of the chosen material, the microstrain characteristics and changes in surface roughness after isostatic pressing were analyzed. After isostatic pressing, two types of microstrains were produced: low microstrain (surface smoothening with decreasing roughness) and large microstrain (surface roughening with increasing roughness). Furthermore, the roughness of the roughened microregions could be further classified based on the strain degree. The phenomenon of weak-interface damage with a large microstrain (plastic deformation, cleavage fracture, and tearing near nonmetallic inclusions) indicated that the surface microstrain analysis could be a new method of high-throughput characterization for microregions with relatively poor micromechanical properties. In general, the effect of isostatic pressing on the surface microstrain of heat-resistant steel provides a promising strategy for achieving high-throughput screening and statistically characterizing microregions with poor micromechanical properties, such as microregions containing microcracks, nonmetallic inclusions, pores, and other surface defects.

2.
Nanomaterials (Basel) ; 14(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38535661

ABSTRACT

The resolving power of metalens telescopes rely on their aperture size. Flat telescopes are advancing with the research on super-resolution confocal metalenses with large aperture. However, the aperture sizes of metalenses are usually bound within hundreds of micrometers due to computational and fabrication challenges, limiting their usage on practical optical devices like telescopes. In this work, we demonstrated a two-step designing method for the design of dual-band far-field super-resolution metalens with aperture sizes from the micro-scale to macro-scale. By utilizing two types of inserted unit cells, the phase profile of a dual-wavelength metalens with a small aperture of 100 µm was constructed. Through numerical simulation, the measured FWHM values of the focal spots of 5.81 µm and 6.81 µm at working wavelengths of 632.8 nm and 1265.6 nm were found to all be slightly smaller than the values of 0.61 λ/NA, demonstrating the super-resolution imaging of the designed metalens. By measuring the optical power ratio of the focal plane and the incident plane, the focusing efficiencies were 76% at 632.8 nm and 64% at 1265.6 nm. Based on the design method for small-aperture metalens, far-field imaging properties through the macro metalens with an aperture of 40 mm were simulated by using the Huygens-Fresnel principle. The simulation results demonstrate confocal far-field imaging behavior at the target wavelengths of 632.8 nm and 1265.6 nm, with a focal length of 200 mm. The design method for dual-band far-field super-resolution metalens with a large aperture opens a door towards the practical applications in the dual-band space telescope system.

3.
Materials (Basel) ; 16(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36837234

ABSTRACT

Microscopic content segregation is among the important reasons for the anisotropy of mechanical properties in the cast-rolled sheets of the 7B05 aluminum alloy. It is of great significance to study the uniformity of aluminum alloys in terms of the microscopic composition and structure. In this study, a precise method for composition quantification based on micro-beam X-ray fluorescence spectroscopy is established by parameter optimization and a calibration coefficient. Furthermore, this method was applied for exploring and quantifying the relationship between recrystallization and deformation microstructures. The results show that the comprehensive measurement effects of all elements are the best when the X-ray tube voltage is 50 kV, the current is 150 µA, and the single-pixel scanning time is 100 ms. After verification, the sum of differences between the measured values and the standard values for all elements using the calibration coefficient is only 0.107%, which confirms the accuracy of the optimized quantitative method. Three types of segregation indexes in national standards were used to capture small differences, and finally ensure that the segregation degrees of elements are Ti > Fe > Cr > Cu > Mn > Zr > Zn > Al. The quantitative segregation results obtained by the spatial-mapping method show that the difference in the content of Al and Zn is approximately 0.2% between the recrystallization region and the deformation region, the difference in the content of Fe and Ti is 0.018% and 0.013%, the difference in the content of Cr, Cu and Zr is approximately 0.01%, and the difference in the content of Mn is not obvious, only 0.004%.

4.
Materials (Basel) ; 15(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36013903

ABSTRACT

The quantitative study of the relationship between material composition, microstructure and properties is of great importance for the improvement in material properties. In this study, the continuous data of elemental composition, recrystallization, hardness and undissolved phase distribution of the same sample in the range of 60 to 150 square millimeters were obtained by high-throughput testing instrument. The distribution characteristics and rules of a single data set were analyzed. In addition, each data set was divided into micro-areas according to the corresponding relationship of location, and the mapping between multi-source heterogeneous micro-area data sets was established to analyze and quantify the correlation between material composition, structure and hardness. The conclusions are as follows: (1) the average size of the insoluble phase in the middle of the two materials is larger than that of the surface, but due to the existence of central segregation, the average area of the T4 insoluble phase showed an abnormal decrease; (2) there was positive micro-segregation of Al, Cr, Ti, and Zr elements, and negative micro-segregation of Zn, Cu, and Fe elements in the recrystallized grains of the T5 middle segregation zone; (3) the growth process of the insoluble phase was synchronous with the recrystallization proportion and the size of the recrystallized grains; (4) the composition segregation and recrystallized coarse grains were the main reasons for the formation of low hardness zone in T4 and T5 materials, respectively.

5.
ChemSusChem ; 14(2): 709-720, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33226188

ABSTRACT

Co nanoparticles (NPs) encapsulated in N-doped carbon nanotubes (Co@NC900 ) are systematically investigated as a potential alternative to precious Pt-group catalysts for hydrogenative heterocyclization reactions. Co@NC900 can efficiently catalyze hydrogenative coupling of 2-nitroaniline to benzaldehyde for synthesis of 2-phenyl-1H-benzo[d]imidazole with >99 % yield at ambient temperature in one step. The robust Co@NC900 catalyst can be easily recovered by an external magnetic field after the reaction and readily recycled for at least six times without any evident decrease in activity. Kinetic experiments indicate that Co@NC900 -promoted hydrogenation is the rate-determining step with a total apparent activation energy of 41±1 kJ mol-1 . Theoretical investigations further reveal that Co@NC900 can activate both H2 and the nitro group of 2-nitroaniline. The observed energy barrier for H2 dissociation is only 2.70 eV in the rate-determining step, owing to the presence of confined Co NPs in Co@NC900 . Potential industrial application of the earth-abundant and non-noble transition metal catalysts is also explored for green and efficient synthesis of heterocyclic compounds.

6.
ACS Appl Mater Interfaces ; 12(1): 654-666, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31808342

ABSTRACT

We reported that phosphorus-doped carbon nanotubes (P-CNTs), showing metal-like properties, can efficiently promote metal-free hydrogenation of nitrobenzene (1a) to aniline (2a) using molecular hydrogen (H2) as a reducing reagent under very mild conditions with a reaction temperature of only 50 °C. The kinetics of 1a hydrogenation over P-CNT reveals that the hydrogenation rate of 1a is a first-order dependence on the H2 pressure and the P-CNT loading level, and a zero-order dependence on 1a concentration, demonstrating the rate-determining step of H2 adsorption and activation over P-CNT. The activation energy of P-CNT-catalyzed 1a hydrogenation is 43 ± 3 kJ mol-1 with the turnover frequency around 3.60 ± 0.12 h-1 at 50 °C. In addition to 1a, the general applicability of the P-CNT-promoted metal-free hydrogenation process is further demonstrated by applying various functionalized nitroaromatics with wide industrial interest. The P-CNT shows both excellent yields and selectivities to hydrogenation with respect to reducible, labile, and strong leaving groups on the nitroaromatics molecules. The stability and reusability of the P-CNT demonstrate up to eight-time recycling without evident loss of activity and selectivity. In addition to hydrogenation, metal-free catalytic transfer hydrogenation of 1a is achieved with P-CNT using diverse hydrogen sources, including hydrazine hydrate (N2H4·H2O), carbon monoxide/water (CO/H2O), and formic acid/triethylamine (HCOOH/Et3N).

SELECTION OF CITATIONS
SEARCH DETAIL
...