Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(4): 3253-3262, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38196390

ABSTRACT

Ferroelectric polarization-controlled band alignment can be realized in van der Waals heterostructures (vdWHs), which can be used to create new types of ferroelectric tunnel junctions (FTJs). In this work, we design six probable configurations of two-dimensional vdWHs based on a two-dimensional α-In2Se3 ferroelectric material which has two opposite polarization states P↑ and P↓, and the semiconductor MoTe2. First-principles calculations show robust ferroelectric polarization-controlled switching behavior between the high conductance state in configuration AA-P↓ and the low conductance state in configuration AA-P↑ in the most stable AA stacked vdWHs. Based on this vdWH, a two-dimensional transverse FTJ with AA-P↓ or AA-P↑ as the tunneling barrier and (In0.5Sn0.5)2Se3 monolayers (n-type doped) as electrodes is designed. The tunneling electroresistance ratio of the FTJs at the Fermi level reaches 1.22 × 104% when the tunneling barrier contains two repeating units N = 2 and can be greatly increased by increasing the thickness of the ferroelectric layer. Analysis of the work function, charge redistribution, and local density of states is performed to interpret the above phenomena. The findings suggest the great potential of the AA stacked α-In2Se3/MoTe2 vdWH in the design of high-performance FTJs and application in high-density non-volatile memory devices.

2.
Opt Express ; 31(22): 36263-36272, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017781

ABSTRACT

Pure spin current, exhibiting no Joule heat and self-powered characteristics, has recently attracted intensive attention. Here, through first-principles calculations and symmetry analysis, we propose a new method to generate photoelectric pure spin current in carbon hexagonal connected three zigzag graphene nanoribbons (ZGNRs) via magnetic field modulation. Specifically, a device with centro-symmetry is designed, which consists of three ZGNRs using two carbon hexagons as connectors ('2-C6'). When the edge spin states of the three ZGNRs from left to right are modulated to AFM-AFM-AFM or FM-AFM-FM by magnetic fields, excellent pure spin currents are obtained which are independent of the photon energy and the angle of the linearly polarized light. However, when the edge spin states are FM-FM-FM orderly, the photocurrent is nearly zero and can be neglected. Analysis show that the first two spin magnetic structures own the spatial inversion antisymmetric spin density which is the origin of stable pure spin currents, while the FM-FM-FM structure owns Cs symmetric spin density, leading to the nearly zero photocurrent. Our findings provide a scheme for obtaining pure spin currents by changing the spin states of the graphene nanoribbons via magnetic field modulation, which is of great importance for the design of spintronic devices.

3.
Appl Opt ; 62(23): 6131-6139, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37707080

ABSTRACT

In this paper, an optical image encryption method is proposed based on structured light illumination and a diffractive neural network (DNN), which can realize conversion between different images. With the use of the structured phase mask (SPM) in the iterative phase retrieval algorithm, a plaintext image is encoded into a DNN composed of multiple phase-only masks (POMs) and ciphertext. It is worth noting that ciphertext is a visible image such that the conversion of one image to another is achieved, leading to high concealment of the proposed optical image encryption method. In addition, the wavelength of the illuminating light, all Fresnel diffraction distances, the optical parameters of the adopted SPM such as focal length and topological charge number, as well as all POMs in the DNN are all considered as security keys in the decryption process, contributing to a large key space and high level of security. Numerical simulations are performed to demonstrate the feasibility of the proposed method, and simulation results show that it exhibits high feasibility and safety as well as strong robustness.

4.
Appl Opt ; 61(24): 7255-7264, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36256347

ABSTRACT

A security-enhanced multiple-image encryption method is proposed based on quick response (QR) codes and modified double random phase encoding (DRPE) in the fractional Fourier transform (FrFT) domain in this paper, where each plaintext is first converted into QR code, and then each QR code is employed to generate the corresponding binary key for decryption with the help of random binary plaintext (RBP). Subsequently, the used RBP is encrypted into noise-like ciphertext by using the modified DRPE in the FrFT domain. In the modified DRPE method, the first random phase mask is activated by the initial FrFT with chaotic phase, and the wavelength of light and the fractional orders as well as the focal lengths of lenses are all used as digital keys to expand the key space. Moreover, the sensitivities of these digital keys are extremely high because the digital keys are closely mapped with the initial values of the chaotic system in the encryption process, which contributes to an extremely high security of the multiple-image encryption method. Furthermore, the high feasibility and strong robustness of the proposed security-enhanced multiple-image encryption method are also demonstrated by using computational simulations.

5.
Stress Biol ; 2(1): 10, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-37676339

ABSTRACT

Both viruses and host cells compete for intracellular polyamines for efficient propagation. Currently, how the key polyamine-metabolizing enzymes, including ornithine decarboxylase 1 (ODC1) and its antizyme 1 (OAZ1), are activated to co-ordinate viral propagation and polyamine biosynthesis remains unknown. Here, we report that the matrix protein of rice stripe mosaic virus (RSMV), a cytorhabdovirus, directly hijacks OAZ1 to ensure the proper assembly of rigid bacilliform non-enveloped virions in leafhopper vector. Viral matrix protein effectively competes with ODC1 to bind to OAZ1, and thus, the ability of OAZ1 to target and mediate the degradation of ODC1 is significantly inhibited during viral propagation, which finally promotes polyamines production. Thus, OAZ1 and ODC1 are activated to synergistically promote viral persistent propagation and polyamine biosynthesis in viruliferous vectors. Our data suggest that it is a novel mechanism for rhabdovirus to exploit OAZ1 for facilitating viral assembly.

6.
iScience ; 23(1): 100773, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31887666

ABSTRACT

Glasses-free three-dimensional (3D) display is considered as a potential disruptive technology for display. The issue of visual fatigue, mainly caused by the inaccurate phase reconstruction in terms of image crosstalk, as well as vergence and accommodation conflict, is the critical obstacle that hinders the real applications of glasses-free 3D display. Here we propose a glasses-free 3D display by adopting metagratings for the pixelated phase modulation to form converged viewpoints. When the viewpoints are closely arranged, the holographic sampling 3D display can approximate a continuous light field. We demonstrate a video rate full-color 3D display prototype without visual fatigue under an LED white light illumination. The metagratings-based holographic sampling 3D display has a thin form factor and is compatible with traditional flat panel and thus has the potential to be used in portable electronics, window display, exhibition display, 3D TV, as well as tabletop display.

7.
Opt Express ; 25(2): 1114-1122, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28157996

ABSTRACT

Limited by the refreshable data volume of commercial spatial light modulator (SLM), electronic holography can hardly provide satisfactory 3D live video. Here we propose a holography based multiview 3D display by separating the phase information of a lightfield from the amplitude information. In this paper, the phase information was recorded by a 5.5-inch 4-view phase plate with a full coverage of pixelated nano-grating arrays. Because only amplitude information need to be updated, the refreshing data volume in a 3D video display was significantly reduced. A 5.5 inch TFT-LCD with a pixel size of 95 µm was used to modulate the amplitude information of a lightfield at a rate of 20 frames per second. To avoid crosstalk between viewing points, the spatial frequency and orientation of each nano-grating in the phase plate was fine tuned. As a result, the transmission light converged to the viewing points. The angular divergence was measured to be 1.02 degrees (FWHM) by average, slightly larger than the diffraction limit of 0.94 degrees. By refreshing the LCD, a series of animated sequential 3D images were dynamically presented at 4 viewing points. The resolution of each view was 640 × 360. Images for each viewing point were well separated and no ghost images were observed. The resolution of the image and the refreshing rate in the 3D dynamic display can be easily improved by employing another SLM. The recoded 3D videos showed the great potential of the proposed holographic 3D display to be used in mobile electronics.

8.
Opt Express ; 24(6): 6203-12, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-27136814

ABSTRACT

Without any special glasses, multiview 3D displays based on the diffractive optics can present high resolution, full-parallax 3D images in an ultra-wide viewing angle. The enabling optical component, namely the phase plate, can produce arbitrarily distributed view zones by carefully designing the orientation and the period of each nano-grating pixel. However, such 3D display screen is restricted to a limited size due to the time-consuming fabricating process of nano-gratings on the phase plate. In this paper, we proposed and developed a lithography system that can fabricate the phase plate efficiently. Here we made two phase plates with full nano-grating pixel coverage at a speed of 20 mm2/mins, a 500 fold increment in the efficiency when compared to the method of E-beam lithography. One 2.5-inch phase plate generated 9-view 3D images with horizontal-parallax, while the other 6-inch phase plate produced 64-view 3D images with full-parallax. The angular divergence in horizontal axis and vertical axis was 1.5 degrees, and 1.25 degrees, respectively, slightly larger than the simulated value of 1.2 degrees by Finite Difference Time Domain (FDTD). The intensity variation was less than 10% for each viewpoint, in consistency with the simulation results. On top of each phase plate, a high-resolution binary masking pattern containing amplitude information of all viewing zone was well aligned. We achieved a resolution of 400 pixels/inch and a viewing angle of 40 degrees for 9-view 3D images with horizontal parallax. In another prototype, the resolution of each view was 160 pixels/inch and the view angle was 50 degrees for 64-view 3D images with full parallax. As demonstrated in the experiments, the homemade lithography system provided the key fabricating technology for multiview 3D holographic display.

9.
Opt Express ; 23(25): 31926-35, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26698984

ABSTRACT

We report distributed Bragg reflector (DBR) polymer lasers fabricated using dot matrix holography. Pairs of distributed Bragg reflector mirrors with variable mirror separations are fabricated and a novel energy transfer blend consisting of a blue-emitting conjugated polymer and a red-emitting one is spin-coated onto the patterned substrate to complete the device. Under optical pumping, the device emits sing-mode lasing around 622 nm with a bandwidth of 0.41 nm. The working threshold is as low as 13.5 µJ/cm² (~1.68 kW/cm²) and the measured slope efficiency reaches 5.2%. The distributed feedback (DFB) cavity and the DBR cavity resonate at the same lasing wavelength while the DFB laser shows a much higher threshold. We further show that flexible DBR lasers can be conveniently fabricated through the UV-imprinting technique by using the patterned silica substrate as the mold. Dot matrix holography represents a versatile approach to control the number, the size, the location and the orientation of DBR mirrors, thus providing great flexibility in designing DBR lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...