Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2322972121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968116

ABSTRACT

Rapid accumulation of repair factors at DNA double-strand breaks (DSBs) is essential for DSB repair. Several factors involved in DSB repair have been found undergoing liquid-liquid phase separation (LLPS) at DSB sites to facilitate DNA repair. RNF168, a RING-type E3 ubiquitin ligase, catalyzes H2A.X ubiquitination for recruiting DNA repair factors. Yet, whether RNF168 undergoes LLPS at DSB sites remains unclear. Here, we identified K63-linked polyubiquitin-triggered RNF168 condensation which further promoted RNF168-mediated DSB repair. RNF168 formed liquid-like condensates upon irradiation in the nucleus while purified RNF168 protein also condensed in vitro. An intrinsically disordered region containing amino acids 460-550 was identified as the essential domain for RNF168 condensation. Interestingly, LLPS of RNF168 was significantly enhanced by K63-linked polyubiquitin chains, and LLPS largely enhanced the RNF168-mediated H2A.X ubiquitination, suggesting a positive feedback loop to facilitate RNF168 rapid accumulation and its catalytic activity. Functionally, LLPS deficiency of RNF168 resulted in delayed recruitment of 53BP1 and BRCA1 and subsequent impairment in DSB repair. Taken together, our finding demonstrates the pivotal effect of LLPS in RNF168-mediated DSB repair.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Tumor Suppressor p53-Binding Protein 1 , Ubiquitin-Protein Ligases , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Ubiquitin/metabolism , Histones/metabolism , Histones/genetics , Polyubiquitin/metabolism
2.
Nucleus ; 15(1): 2296243, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38146123

ABSTRACT

DNA double-strand break (DSB) is the most dangerous type of DNA damage, which may lead to cell death or oncogenic mutations. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are two typical DSB repair mechanisms. Recently, many studies have revealed that liquid-liquid phase separation (LLPS) plays a pivotal role in DSB repair and response. Through LLPS, the crucial biomolecules are quickly recruited to damaged sites with a high concentration to ensure DNA repair is conducted quickly and efficiently, which facilitates DSB repair factors activating downstream proteins or transmitting signals. In addition, the dysregulation of the DSB repair factor's phase separation has been reported to promote the development of a variety of diseases. This review not only provides a comprehensive overview of the emerging roles of LLPS in the repair of DSB but also sheds light on the regulatory patterns of phase separation in relation to the DNA damage response (DDR).


Subject(s)
DNA Breaks, Double-Stranded , Phase Separation , DNA Repair , Homologous Recombination , DNA/genetics
3.
Nucleus ; 14(1): 2293599, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38105528

ABSTRACT

Noncoding RNAs have been found to play important roles in DNA damage repair, whereas the participation of circRNA remains undisclosed. Here, we characterized ciRS-7, a circRNA containing over 70 putative miR-7-binding sites, as an enhancer of miRISC condensation and DNA repair. Both in vivo and in vitro experiments confirmed the condensation of TNRC6B and AGO2, two core protein components of human miRISC. Moreover, overexpressing ciRS-7 largely increased the condensate number of TNRC6B and AGO2 in cells, while silencing ciRS-7 reduced it. Additionally, miR-7 overexpression also promoted miRISC condensation. Consistent with the previous report that AGO2 participated in RAD51-mediated DNA damage repair, the overexpression of ciRS-7 significantly promoted irradiation-induced DNA damage repair by enhancing RAD51 recruitment. Our results uncover a new role of circRNA in liquid-liquid phase separation and provide new insight into the regulatory mechanism of ciRS-7 on miRISC function and DNA repair.


Subject(s)
MicroRNAs , RNA, Circular , Humans , RNA, Circular/genetics , Phase Separation , MicroRNAs/genetics , MicroRNAs/metabolism , DNA Repair/genetics , DNA Damage , RNA-Binding Proteins/metabolism
4.
Cell Death Dis ; 14(11): 746, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968256

ABSTRACT

DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA Repair/genetics , DNA End-Joining Repair , DNA Damage , DNA
6.
Br J Cancer ; 129(7): 1095-1104, 2023 10.
Article in English | MEDLINE | ID: mdl-37558922

ABSTRACT

BACKGROUND: Accurately assessing the risk of recurrence in patients with locally advanced rectal cancer (LARC) before treatment is important for the development of treatment strategies. The purpose of this study is to develop an MRI-based scoring system to predict the risk of recurrence in patients with LARC. METHODS: This was a multicenter observational study that enrolled participants who underwent neoadjuvant chemoradiotherapy. To evaluate the risk of recurrence in these patients, we developed the mrDEC scoring system and assessed inter-reader agreement. Additionally, we plotted Kaplan-Meier curves to compare the 3-year disease-free survival (DFS) and 5-year overall survival (OS) rates among patients with different mrDEC scores. RESULTS: A total of 1287 patients with LARC were included in this study. We observed substantial inter-reader agreement for mrDEC. Based on the mrDEC scores ranging from 0 to 3, the patients were categorized into four groups. The 3-year DFS rates for the groups were 91.0%, 79.5%, 65.5%, and 44.0% (P < 0.0001), respectively, and the 5-year OS rates were 92.9%, 87.1%, 74.8%, and 44.5%, respectively (P < 0.0001). CONCLUSIONS: The mrDEC scoring system proved to be an effective tool for predicting the prognosis of patients with LARC and can assist clinicians in clinical decision-making.


Subject(s)
Rectal Neoplasms , Humans , Treatment Outcome , Rectal Neoplasms/therapy , Rectal Neoplasms/drug therapy , Chemoradiotherapy , Prognosis , Disease-Free Survival , Neoadjuvant Therapy , Magnetic Resonance Imaging , Risk Assessment , Retrospective Studies , Neoplasm Staging
7.
Nucleic Acids Res ; 51(18): 9733-9747, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37638744

ABSTRACT

RAP80 has been characterized as a component of the BRCA1-A complex and is responsible for the recruitment of BRCA1 to DNA double-strand breaks (DSBs). However, we and others found that the recruitment of RAP80 and BRCA1 were not absolutely temporally synchronized, indicating that other mechanisms, apart from physical interaction, might be implicated. Recently, liquid-liquid phase separation (LLPS) has been characterized as a novel mechanism for the organization of key signaling molecules to drive their particular cellular functions. Here, we characterized that RAP80 LLPS at DSB was required for RAP80-mediated BRCA1 recruitment. Both cellular and in vitro experiments showed that RAP80 phase separated at DSB, which was ascribed to a highly disordered region (IDR) at its N-terminal. Meanwhile, the Lys63-linked poly-ubiquitin chains that quickly formed after DSBs occur, strongly enhanced RAP80 phase separation and were responsible for the induction of RAP80 condensation at the DSB site. Most importantly, abolishing the condensation of RAP80 significantly suppressed the formation of BRCA1 foci, encovering a pivotal role of RAP80 condensates in BRCA1 recruitment and radiosensitivity. Together, our study disclosed a new mechanism underlying RAP80-mediated BRCA1 recruitment, which provided new insight into the role of phase separation in DSB repair.

8.
BMC Cancer ; 23(1): 467, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37217903

ABSTRACT

BACKGROUND: Neoadjuvant chemoradiotherapy (NCRT) and total mesorectal excision are standard treatment regimen for patients with locally advanced rectal cancer (LARC). This sphincter-saving treatment strategy may be accompanied by a series of anorectal functional disorders. Yet, prospective studies that dynamically evaluating the respective roles of radiotherapy, chemotherapy and surgery on anorectal function are lacking. PATIENTS/DESIGN: The study is a prospective, observational, controlled, multicentre study. After screening for eligibility and obtaining informed consent, a total of 402 LARC patients undergoing NCRT followed by surgery, or neoadjuvant chemotherapy followed by surgery, or surgery only would be included in the trial. The primary outcome measure is the average resting pressure of anal sphincter. The secondary outcome measures are maximum anal sphincter contraction pressure, Wexner continence score and low anterior resection syndrome (LARS) score. Evaluations will be carried out at the following stages: baseline (T1), after radiotherapy or chemotherapy (before surgery, T2), after surgery (before closing the temporary stoma, T3), and at follow-up visits (every 3 to 6 months, T4, T5……). Follow-up for each patient will be at least 2 years. DISCUSSION: We expect the program to provide more information of neoadjuvant radiotherapy and/or chemotherapy on anorectal function, and to optimize the treatment strategy to reduce anorectal dysfunction for LARC patients. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05671809). Registered on 26 December 2022.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Neoadjuvant Therapy/methods , Rectal Neoplasms/pathology , Prospective Studies , Postoperative Complications/etiology , Treatment Outcome , Chemoradiotherapy/methods , Neoplasm Staging , Observational Studies as Topic , Multicenter Studies as Topic
9.
Cancer Sci ; 114(8): 3176-3189, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37248790

ABSTRACT

Epigenetic alterations marked by DNA methylation are frequent events during the early development of nasopharyngeal carcinoma (NPC). We identified that TRIM29 is hypomethylated and overexpressed in NPC cell lines and tissues. TRIM29 silencing not only limited the growth of NPC cells in vitro and in vivo, but also induced cellular senescence, along with reactive oxygen species (ROS) accumulation. Mechanistically, we found that TRIM29 interacted with voltage-dependent anion-selective channel 1 (VDAC1) to activate mitophagy clearing up damaged mitochondria, which are the major source of ROS. In patients with NPC, high levels of TRIM29 expression are associated with an advanced clinical stage. Moreover, we detected hypomethylation of TRIM29 in patient nasopharyngeal swab DNA. Our findings indicate that TRIM29 depends on VDAC1 to induce mitophagy and prevents cellular senescence by decreasing ROS. Detection of aberrantly methylated TRIM29 in the nasopharyngeal swab DNA could be a promising strategy for the early detection of NPC.


Subject(s)
Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Carcinoma/metabolism , Nasopharyngeal Neoplasms/pathology , Reactive Oxygen Species/metabolism , Cell Line, Tumor , DNA Methylation , Epigenesis, Genetic , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics
10.
Cell Death Dis ; 13(10): 851, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202782

ABSTRACT

Protein disulfide isomerase (PDI) is an endoplasmic reticulum (ER) enzyme that mediates the formation of disulfide bonds, and is also a therapeutic target for cancer treatment. Our previous studies found that PDI mediates apoptotic signaling by inducing mitochondrial dysfunction. Considering that mitochondrial dysfunction is a major contributor to autophagy, how PDI regulates autophagy remains unclear. Here, we provide evidence that high expression of PDI in colorectal cancer tumors significantly increases the risk of metastasis and poor prognosis of cancer patients. PDI inhibits radio/chemo-induced cell death by regulating autophagy signaling. Mechanistically, the combination of PDI and GRP78 was enhanced after ER stress, which inhibits the degradation of AKT by GRP78, and eventually activates the mTOR pathway to inhibit autophagy initiation. In parallel, PDI can directly interact with the mitophagy receptor PHB2 in mitochondrial, then competitively blocks the binding of LC3II and PHB2 and inhibits the mitophagy signaling. Collectively, our results identify that PDI can reduce radio/chemo-sensitivity by regulating autophagy, which could be served as a potential target for radio/chemo-therapy.


Subject(s)
Microtubule-Associated Proteins/metabolism , Prohibitins/metabolism , Protein Disulfide-Isomerases , Proto-Oncogene Proteins c-akt , Autophagy , Disulfides/chemistry , Humans , Protein Disulfide-Isomerases/genetics , TOR Serine-Threonine Kinases
11.
Cell Death Dis ; 13(8): 709, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974014

ABSTRACT

Paraspeckles are mammal-specific membraneless nuclear bodies that participate in various biological processes. NONO, a central paraspeckle component, has been shown to play pivotal roles in DNA double-strand breaks (DSB) repair, whereas its underlying mechanism needs to be further disclosed. Here, using co-immunoprecipitation and mass spectrum, we identified ribosomal protein P0 (RPLP0) as a DSB-induced NONO-binding protein; RPLP0 binds to the RRM1 and RRM2 domains of NONO. Similar to NONO, RPLP0 enhances non-homologous end joining-mediated DSB repair, which was ascribed to a ribosome-independent manner. Interestingly, paraspeckles were induced as early as 15 min after irradiation; it further recruited nuclear RPLP0 to enhance its interaction with NONO. Radiation-induced NONO/RPLP0 complex subsequently anchored at the damaged DNA and increased the autophosphorylation of DNA-PK at Thr2609, thereby enhancing DSB repair. Consistently, in vivo and in vitro experiments showed that depletion of NONO sensitizes tumor cells to radiation. For patients with locally advanced rectal cancer, NONO expression was remarkably increased in tumor tissues and correlated with a poor response to radiochemotherapy. Our findings suggest a pivotal role of radiation-induced paraspeckles in DNA repair and tumor radioresistance, and provide a new insight into the ribosome-independent function of ribosomal proteins.


Subject(s)
DNA Repair , Neoplasms , Paraspeckles , Radiation Tolerance , Ribosomal Proteins , DNA Damage , DNA End-Joining Repair , DNA-Binding Proteins/genetics , Humans , Neoplasms/genetics , Neoplasms/radiotherapy , Paraspeckles/genetics , RNA-Binding Proteins/genetics , Radiation Tolerance/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
12.
Cancers (Basel) ; 14(16)2022 08 09.
Article in English | MEDLINE | ID: mdl-36010842

ABSTRACT

Hepatoid adenocarcinoma of the stomach (HAS) is a rare malignancy with aggressive biological behavior. This study aimed to compare the genetic landscape of HAS with liver hepatocellular carcinoma (LIHC), gastric cancer (GC), and AFP-producing GC (AFPGC) and identify clinically actionable alterations. Thirty-eight cases of HAS were collected for whole-exome sequencing. Significantly mutated genes were identified. TP53 was the most frequently mutated gene (66%). Hypoxia, TNF-α/NFκB, mitotic spindle assembly, DNA repair, and p53 signaling pathways mutated frequently. Mutagenesis mechanisms in HAS were associated with spontaneous or enzymatic deamination of 5-methylcytosine to thymine and defective homologous recombination-related DNA damage repair. However, LIHC was characteristic of exposure to aflatoxin and aristolochic acid. The copy number variants (CNVs) in HAS was significantly different compared to LIHC, GC, and AFPGC. Aggressive behavior-related CNVs were identified, including local vascular invasion, advanced stages, and adverse prognosis. In 55.26% of HAS patients there existed at least one clinically actionable alteration, including ERBB2, FGFR1, CDK4, EGFR, MET, and MDM2 amplifications and BRCA1/2 mutations. MDM2 amplification with functional TP53 was detected in 5% of HAS patients, which was proved sensitive to MDM2 inhibitors. A total of 10.53% of HAS patients harbored TMB > 10 muts/Mb. These findings improve our understanding of the genomic features of HAS and provide potential therapeutic targets.

13.
Nat Commun ; 13(1): 2638, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551189

ABSTRACT

The rapid recognition of DNA double-strand breaks (DSBs) by the MRE11/RAD50/NBS1 (MRN) complex is critical for the initiation of DNA damage response and DSB end resection. Here, we show that MRN complex interacting protein (MRNIP) forms liquid-like condensates to promote homologous recombination-mediated DSB repair. The intrinsically disordered region is essential for MRNIP condensate formation. Mechanically, the MRN complex is compartmentalized and concentrated into MRNIP condensates in the nucleus. After DSB formation, MRNIP condensates move to the damaged DNA rapidly to accelerate the binding of DSB by the concentrated MRN complex, therefore inducing the autophosphorylation of ATM and subsequent activation of DNA damage response signaling. Meanwhile, MRNIP condensates-enhanced MRN complex loading further promotes DSB end resection. In addition, data from xenograft models and clinical samples confirm a correlation between MRNIP and radioresistance. Together, these results reveal an important role of MRNIP phase separation in DSB response and the MRN complex-mediated DSB end resection.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Binding Proteins , Acid Anhydride Hydrolases/metabolism , Cell Cycle Proteins/metabolism , DNA , DNA Repair , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Humans , MRE11 Homologue Protein/metabolism , Recombinational DNA Repair
14.
Br J Cancer ; 127(2): 249-257, 2022 07.
Article in English | MEDLINE | ID: mdl-35368044

ABSTRACT

BACKGROUND: To analyse the performance of multicentre pre-treatment MRI-based radiomics (MBR) signatures combined with clinical baseline characteristics and neoadjuvant treatment modalities to predict complete response to neoadjuvant (chemo)radiotherapy in locally advanced rectal cancer (LARC). METHODS: Baseline MRI and clinical characteristics with neoadjuvant treatment modalities at four centres were collected. Decision tree, support vector machine and five-fold cross-validation were applied for two non-imaging and three radiomics-based models' development and validation. RESULTS: We finally included 674 patients. Pre-treatment CEA, T stage, and histologic grade were selected to generate two non-imaging models: C model (clinical baseline characteristics alone) and CT model (clinical baseline characteristics combining neoadjuvant treatment modalities). The prediction performance of both non-imaging models were poor. The MBR signatures comprising 30 selected radiomics features, the MBR signatures combining clinical baseline characteristics (CMBR), and the CMBR incorporating neoadjuvant treatment modalities (CTMBR) all showed good discrimination with mean AUCs of 0.7835, 0.7871 and 0.7916 in validation sets, respectively. The three radiomics-based models had insignificant discrimination in performance. CONCLUSIONS: The performance of the radiomics-based models were superior to the non-imaging models. MBR signatures seemed to reflect LARC's true nature more accurately than clinical parameters and helped identify patients who can undergo organ preservation strategies.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Magnetic Resonance Imaging/methods , Neoadjuvant Therapy/methods , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/pathology , Rectal Neoplasms/therapy , Rectum/pathology , Retrospective Studies
15.
Br J Cancer ; 127(2): 268-277, 2022 07.
Article in English | MEDLINE | ID: mdl-35388140

ABSTRACT

BACKGROUND: The potential of using magnetic resonance image tumour-regression grading (MRI-TRG) system to predict pathological TRG is debatable for locally advanced rectal cancer treated by neoadjuvant radiochemotherapy. METHODS: Referring to the American Joint Committee on Cancer/College of American Pathologists (AJCC/CAP) TRG classification scheme, a new four-category MRI-TRG system based on the volumetric analysis of the residual tumour and radiochemotherapy induced anorectal fibrosis was established. The agreement between them was evaluated by Kendall's tau-b test, while Kaplan-Meier analysis was used to calculate survival outcomes. RESULTS: In total, 1033 patients were included. Good agreement between MRI-TRG and AJCC/CAP TRG classifications was observed (k = 0.671). Particularly, as compared with other pairs, MRI-TRG 0 displayed the highest sensitivity [90.1% (95% CI: 84.3-93.9)] and specificity [92.8% (95% CI: 90.4-94.7)] in identifying AJCC/CAP TRG 0 category patients. Except for the survival ratios that were comparable between the MRI-TRG 0 and MRI-TRG 1 categories, any two of the four categories had distinguished 3-year prognosis (all P < 0.05). Cox regression analysis further proved that the MRI-TRG system was an independent prognostic factor (all P < 0.05). CONCLUSION: The new MRI-TRG system might be a surrogate for AJCC/CAP TRG classification scheme. Importantly, the system is a reliable and non-invasive way to identify patients with complete pathological responses.


Subject(s)
Rectal Neoplasms , Chemoradiotherapy/methods , Humans , Magnetic Resonance Imaging , Neoadjuvant Therapy , Neoplasm Grading , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Treatment Outcome
16.
Lancet Digit Health ; 4(1): e8-e17, 2022 01.
Article in English | MEDLINE | ID: mdl-34952679

ABSTRACT

BACKGROUND: Accurate prediction of tumour response to neoadjuvant chemoradiotherapy enables personalised perioperative therapy for locally advanced rectal cancer. We aimed to develop and validate an artificial intelligence radiopathomics integrated model to predict pathological complete response in patients with locally advanced rectal cancer using pretreatment MRI and haematoxylin and eosin (H&E)-stained biopsy slides. METHODS: In this multicentre observational study, eligible participants who had undergone neoadjuvant chemoradiotherapy followed by radical surgery were recruited, with their pretreatment pelvic MRI (T2-weighted imaging, contrast-enhanced T1-weighted imaging, and diffusion-weighted imaging) and whole slide images of H&E-stained biopsy sections collected for annotation and feature extraction. The RAdioPathomics Integrated preDiction System (RAPIDS) was constructed by machine learning on the basis of three feature sets associated with pathological complete response: radiomics MRI features, pathomics nucleus features, and pathomics microenvironment features from a retrospective training cohort. The accuracy of RAPIDS for the prediction of pathological complete response in locally advanced rectal cancer was verified in two retrospective external validation cohorts and further validated in a multicentre, prospective observational study (ClinicalTrials.gov, NCT04271657). Model performances were evaluated using area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). FINDINGS: Between Sept 25, 2009, and Nov 3, 2017, 303 patients were retrospectively recruited in the training cohort, 480 in validation cohort 1, and 150 in validation cohort 2; 100 eligible patients were enrolled in the prospective study between Jan 10 and June 10, 2020. RAPIDS had favourable accuracy for the prediction of pathological complete response in the training cohort (AUC 0·868 [95% CI 0·825-0·912]), and in validation cohort 1 (0·860 [0·828-0·892]) and validation cohort 2 (0·872 [0·810-0·934]). In the prospective validation study, RAPIDS had an AUC of 0·812 (95% CI 0·717-0·907), sensitivity of 0·888 (0·728-0·999), specificity of 0·740 (0·593-0·886), NPV of 0·929 (0·862-0·995), and PPV of 0·512 (0·313-0·710). RAPIDS also significantly outperformed single-modality prediction models (AUC 0·630 [0·507-0·754] for the pathomics microenvironment model, 0·716 [0·580-0·852] for the radiomics MRI model, and 0·733 [0·620-0·845] for the pathomics nucleus model; all p<0·0001). INTERPRETATION: RAPIDS was able to predict pathological complete response to neoadjuvant chemoradiotherapy based on pretreatment radiopathomics images with high accuracy and robustness and could therefore provide a novel tool to assist in individualised management of locally advanced rectal cancer. FUNDING: National Natural Science Foundation of China; Youth Innovation Promotion Association of the Chinese Academy of Sciences.


Subject(s)
Artificial Intelligence/standards , Neoadjuvant Therapy/methods , Rectal Neoplasms/therapy , Aged , Female , Humans , Male , Middle Aged , Prospective Studies , Retrospective Studies
17.
Signal Transduct Target Ther ; 6(1): 333, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34482361

ABSTRACT

Application of differentiation therapy targeting cellular plasticity for the treatment of solid malignancies has been lagging. Nasopharyngeal carcinoma (NPC) is a distinctive cancer with poor differentiation and high prevalence of Epstein-Barr virus (EBV) infection. Here, we show that the expression of EBV latent protein LMP1 induces dedifferentiated and stem-like status with high plasticity through the transcriptional inhibition of CEBPA. Mechanistically, LMP1 upregulates STAT5A and recruits HDAC1/2 to the CEBPA locus to reduce its histone acetylation. HDAC inhibition restored CEBPA expression, reversing cellular dedifferentiation and stem-like status in mouse xenograft models. These findings provide a novel mechanistic epigenetic-based insight into virus-induced cellular plasticity and propose a promising concept of differentiation therapy in solid tumor by using HDAC inhibitors to target cellular plasticity.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , Histone Deacetylase Inhibitors/pharmacology , Nasopharyngeal Carcinoma/drug therapy , STAT5 Transcription Factor/genetics , Viral Matrix Proteins/genetics , Animals , Cell Dedifferentiation/drug effects , Cell Line, Tumor , Cell Plasticity/drug effects , Epstein-Barr Virus Infections/drug therapy , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/virology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Viral/drug effects , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/pathogenicity , Heterografts , Humans , Mice , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/virology
18.
Front Oncol ; 11: 674253, 2021.
Article in English | MEDLINE | ID: mdl-34336663

ABSTRACT

BACKGROUND: Patients with lateral lymph nodes (LLNs) metastasis are not effectively treated with neoadjuvant chemoradiotherapy. This study aimed to compare the efficacy of three neoadjuvant therapeutic regimens, namely, chemotherapy, chemoradiotherapy, and chemoradiotherapy with a dose boost of LLNs, and to identify the optimal approach for treating LLNs metastasis of locally advanced rectal cancer. METHODS: A total of 202 patients with baseline LLNs metastasis (short axis ≥5 mm) and treated with neoadjuvant treatment, followed by radical surgery from 2011 to 2019, were enrolled. The short axis of the LLNs on baseline and restaging MRI were recorded. Survival outcomes were compared. RESULTS: In the booster subgroup, shrinkage of LLNs was significantly greater than in the neoadjuvant chemotherapy and chemoradiotherapy subgroups (P <0.001), without increasing radiation related side effects (P = 0.121). For patients with baseline LLNs of short axis ≥5 mm in the booster subgroup, the response rate (short axis <5 mm on restaging MRI) was 72.9%, significantly higher than patients in the neoadjuvant chemotherapy subgroup (48.9%, P = 0.007) and higher than for patients in the neoadjuvant chemoradiotherapy group (65.0%), but there was no statistical difference (P = 0.411). The 3-year local recurrence and lateral local recurrence rates were both 2.3% in the dose booster group, which were lower than those of the other two subgroups (local recurrence: P <0.001; lateral local recurrence: P <0.001). The short axis of lateral lymph nodes (≥5 and <5 mm) on restaging MRI was an independent risk factor for prognosis (P <0.05). CONCLUSION: Radiation dose boost is an effective way of increasing the response rate and decreasing recurrence rates. The restaging LLNs with short axis ≥5 mm is a predictor of poor prognosis.

19.
Cancer Sci ; 112(11): 4758-4771, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34449929

ABSTRACT

Small bowel adenocarcinoma (SBA) is a rare malignancy with a poor prognosis and limited treatment options. Despite prior studies, molecular characterization of this disease is not well defined, and little is known regarding Chinese SBA patients. In this study, we conducted multigene next-generation sequencing and 16S ribosomal RNA gene sequencing on samples from 76 Chinese patients with surgically resected primary SBA. Compared with colorectal cancer and Western SBA cohorts, a distinctive genomic profile was revealed in Chinese SBA cohorts. According to the levels of clinical actionability to targetable alterations stratified by OncoKB system, 75% of patients harbored targetable alterations, of which ERBB2, BRCA1/2, and C-KIT mutations were the most common targets of highest-level actionable alterations. In DNA mismatch repair-proficient (pMMR) patients, significant associations between high tumor mutational burden and specific genetic alterations were identified. Moreover, KRAS mutations/TP53 wild-type/nondisruptive mutations (KRASmut /TP53wt/non-dis ) were independently associated with an inferior recurrence-free survival (hazard ratio [HR] = 4.21, 95% confidence interval [CI] = 1.94-9.14, P < .001). The bacterial profile revealed Proteobacteia, Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Cyanobacteria were the most common phyla in SBA. Furthermore, patients were clustered into three subgroups based on the relative abundance of bacterial phyla, and the distributions of the subgroups were significantly associated with the risk of recurrence stratified by TP53 and KRAS mutations. In conclusion, these findings provided a comprehensive molecular basis for understanding SBA, which will be of great significance in improving the treatment strategies and clinical management of this population.


Subject(s)
Adenocarcinoma/genetics , High-Throughput Nucleotide Sequencing , Intestinal Neoplasms/genetics , Intestine, Small , RNA, Ribosomal, 16S/genetics , Adenocarcinoma/microbiology , Adenocarcinoma/mortality , Adult , Aged , Aged, 80 and over , China , DNA Mismatch Repair , Disease-Free Survival , Duodenal Neoplasms/genetics , Duodenal Neoplasms/microbiology , Duodenal Neoplasms/mortality , Female , Gastrointestinal Microbiome , Genes, BRCA1 , Genes, BRCA2 , Genes, p53 , Genes, ras , Humans , Ileal Neoplasms/genetics , Ileal Neoplasms/microbiology , Ileal Neoplasms/mortality , Intestinal Neoplasms/microbiology , Intestinal Neoplasms/mortality , Intestine, Small/microbiology , Jejunal Neoplasms/genetics , Jejunal Neoplasms/microbiology , Jejunal Neoplasms/mortality , Male , Middle Aged , Prognosis , Proto-Oncogene Proteins c-kit/genetics , Receptor, ErbB-2/genetics
20.
Am J Cancer Res ; 11(6): 2838-2852, 2021.
Article in English | MEDLINE | ID: mdl-34249431

ABSTRACT

Radioresistance is one of the main causes of cancer treatment failure, which leads to relapse and inferior survival outcome of cancer patients. Liquid-liquid phase separation (LLPS) of proteins is known to be involved in various biological processes, whereas its role in the regulation of radiosensitivity remains largely unknown. In this study, we characterized NONO, an RNA/DNA binding protein with LLPS capacity, as an essential regulator of tumor radioresistance. In vitro assay showed that NONO involved in DNA repair via non-homologous end joining (NHEJ) manner. NONO knockout significantly reduced DNA damage repair and sensitized tumor cells to irradiation in vitro and in vivo. NONO overexpression was correlated with an inferior survival outcome in cancer patients. Mechanically, NONO was associated with nuclear EGFR (nEGFR). Both irradiation and EGF treatment induced nEGFR accumulation, thereby increased the association between NONO and nEGFR. However, NONO was not a substrate of EGFR kinase. Furthermore, NONO promoted DNA damage-induced DNA-PK phosphorylation at T2609 by enhancing the interaction between EGFR and DNA-PK. Importantly, NONO protein formed high concentration LLPS droplets in vitro, and recruited EGFR and DNA-PK. Disruption of NONO droplets with LLPS inhibitor significantly reduced the interaction between EGFR and DNA-PK, and suppressed DNA damage-induced phosphorylation of T2609-DNA-PK. Taken together, LLPS of NONO recruits nuclear EGFR and DNA-PK and enhances their interaction, further increases DNA damage-activated pT2609-DNA-PK and promotes NHEJ-mediated DNA repair, finally leads to tumor radioresistance. NONO phase separation-mediated radioresistance may serve as a novel molecular target to sensitize tumor cell to radiotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...