Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 20(1): e1011824, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38252668

ABSTRACT

The transcriptional regulatory network (TRN) of E. coli consists of thousands of interactions between regulators and DNA sequences. Regulons are typically determined either from resource-intensive experimental measurement of functional binding sites, or inferred from analysis of high-throughput gene expression datasets. Recently, independent component analysis (ICA) of RNA-seq compendia has shown to be a powerful method for inferring bacterial regulons. However, it remains unclear to what extent regulons predicted by ICA structure have a biochemical basis in promoter sequences. Here, we address this question by developing machine learning models that predict inferred regulon structures in E. coli based on promoter sequence features. Models were constructed successfully (cross-validation AUROC > = 0.8) for 85% (40/47) of ICA-inferred E. coli regulons. We found that: 1) The presence of a high scoring regulator motif in the promoter region was sufficient to specify regulatory activity in 40% (19/47) of the regulons, 2) Additional features, such as DNA shape and extended motifs that can account for regulator multimeric binding, helped to specify regulon structure for the remaining 60% of regulons (28/47); 3) investigating regulons where initial machine learning models failed revealed new regulator-specific sequence features that improved model accuracy. Finally, we found that strong regulatory binding sequences underlie both the genes shared between ICA-inferred and experimental regulons as well as genes in the E. coli core pan-regulon of Fur. This work demonstrates that the structure of ICA-inferred regulons largely can be understood through the strength of regulator binding sites in promoter regions, reinforcing the utility of top-down inference for regulon discovery.


Subject(s)
Escherichia coli , Regulon , Regulon/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Bacteria/genetics , Binding Sites/genetics , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Bacterial/genetics , Bacterial Proteins/metabolism
2.
Dose Response ; 20(2): 15593258221107193, 2022.
Article in English | MEDLINE | ID: mdl-35693872

ABSTRACT

Radiation-induced lung injuries (RILI) is one of the serious complications of radiotherapy posed by the damage of alveolar cells and inflammation over-reaction. We aimed to investigate the potential protective effects of doxepin on RILI (20 Gy total dose at 3 Gy/min of X-ray irradiation), as well as its underlying mechanism. For animal experiments, such parameters as Immunohistochemistry and hematoxylin and eosin (H&E) staining, WBC (white blood cell), CRP (C-reactive protein), Western blot, and q-PCR were detected. The results indicated that both survival status and weight increase of irradiated rats treated by doxepin (3 mg/kg/day, rat) were higher than those of treated with irradiation alone (Dosing started the day before irradiation). Further, histological examinations showed doxepin could tenuate the radiation injury, as indicated as alveolar inflammatory exudation and there was only mild interstitial inflammation infiltration. Western blotting and q-PCR showed that expression of NF-κß in X group were higher than that in XMD group. For the first time, we reported doxepin functioned as a radioprotectant candidate, which provide a promising application of doxepin for protecting radiotherapy injuries.

3.
Biomed Eng Online ; 20(1): 18, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33563294

ABSTRACT

BACKGROUND: Advances in regenerative medicine technologies have been strongly proposed in the management of thyroid diseases. Mechanistically, the adoption of thyroid bioengineering requires a scaffold that shares a similar three-dimensional (3D) space structure, biomechanical properties, protein component, and cytokines to the native extracellular matrix (ECM). METHODS: 24 male New Zealand white rabbits were used in this experimental study. The rabbit thyroid glands were decellularized by immersion/agitation decellularization protocol. The 3D thyroid decellularization scaffolds were tested with histological and immunostaining analyses, scanning electron microscopy, DNA quantification, mechanical properties test, cytokine assay and cytotoxicity assays. Meanwhile, the decellularization scaffold were seeded with human thyroid follicular cells, cell proliferation and thyroid peroxidase were determined to explore the biocompatibility in vitro. RESULTS: Notably, through the imaging studies, it was distinctly evident that our protocol intervention minimized cellular materials and maintained the 3D spatial structure, biomechanical properties, ECM composition, and biologic cytokine. Consequently, the decellularization scaffold was seeded with human thyroid follicular cells, thus strongly revealing its potential in reinforcing cell adhesion, proliferation, and preserve important protein expression. CONCLUSIONS: The adoption of our protocol to generate a decellularized thyroid scaffold can potentially be utilized in transplantation to manage thyroid diseases through thyroid bioengineering.


Subject(s)
Bioengineering/methods , Extracellular Matrix/metabolism , Thyroid Gland/cytology , Animals , Humans , Rabbits , Tissue Scaffolds
4.
Bioact Mater ; 6(7): 2187-2197, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33511316

ABSTRACT

Chronic kidney disease has been recognized as a major public health problem worldwide and renal fibrosis is a common pathological process occurring in chronic renal failure. It is very promising to find the strategies to slow or even prevent the progression of fibrosis. This study focused on whether renal fibrosis decellularized scaffolds has the potential to be a model of cellular mechanisms of tissue fibrosis or donors for tissue engineering. In order to evaluate the feasibility of decellularized scaffolds derived from pathological kidneys, histology, proteomics and ELISA will be used to analysis the changes in the structure and main components of fibrotic tissue. The fibrosis model in this paper was induced by adenine-fed and the results showed that the structure of fibrotic scaffold was changed and some protein were up-regulated or down-regulated, but the cytokines associated with renal regeneration after injury were remained. In cell experiments, endothelial progenitor cells proliferated well, which proved that the fibrotic scaffolds have non-cytotoxic. All these conclusions indicate that the renal fibrosis decellularized scaffolds model has the ability to study fibrosis mechanism and the potential to be engineering donors as well as normal scaffolds.

5.
Chin Med J (Engl) ; 133(10): 1192-1202, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32433051

ABSTRACT

BACKGROUND: Pulmonary fibrosis is a respiratory disease caused by the proliferation of fibroblasts and accumulation of the extracellular matrix (ECM). It is known that the lung ECM is mainly composed of a three-dimensional fiber mesh filled with various high-molecular-weight proteins. However, the small-molecular-weight proteins in the lung ECM and their differences between normal and fibrotic lung ECM are largely unknown. METHODS: Healthy adult male Sprague-Dawley rats (Rattus norvegicus) weighing about 150 to 200 g were randomly divided into three groups using random number table: A, B, and C and each group contained five rats. The rats in Group A were administered a single intragastric (i.g.) dose of 500 µL of saline as control, and those in Groups B and C were administered a single i.g. dose of paraquat (PQ) dissolved in 500 µL of saline (20 mg/kg). After 2 weeks, the lungs of rats in Group B were harvested for histological observation, preparation of de-cellularized lung scaffolds, and proteomic analysis for small-molecular-weight proteins, and similar procedures were performed on Group C and A after 4 weeks. The differentially expressed small-molecular-weight proteins (DESMPs) between different groups and the subcellular locations were analyzed. RESULTS: Of the 1626 small-molecular-weight proteins identified, 1047 were quantifiable. There were 97 up-regulated and 45 down-regulated proteins in B vs. A, 274 up-regulated and 31 down-regulated proteins in C vs. A, and 237 up-regulated and 28 down-regulated proteins identified in C vs. B. Both the up-regulated and down-regulated proteins in the three comparisons were mainly distributed in single-organism processes and cellular processes within biological process, cell and organelle within cellular component, and binding within molecular function. Further, more up-regulated than down-regulated proteins were identified in most sub-cellular locations. The interactions of DESMPs identified in extracellular location in all comparisons showed that serum albumin (Alb) harbored the highest degree of node (25), followed by prolyl 4-hydroxylase beta polypeptide (12), integrin ß1 (10), apolipoprotein A1 (9), and fibrinogen gamma chain (9). CONCLUSIONS: Numerous PQ-induced DESMPs were identified in de-cellularized lungs of rats by high throughput proteomics analysis. The DESMPs between the control and treatment groups showed diversity in molecular functions, biological processes, and pathways. In addition, the interactions of extracellular DESMPs suggested that the extracellular proteins Alb, Itgb1, Apoa1, P4hb, and Fgg in ECM could be potentially used as biomarker candidates for pulmonary fibrosis. These results provided useful information and new insights regarding pulmonary fibrosis.


Subject(s)
Proteomics , Pulmonary Fibrosis , Animals , Extracellular Matrix , Lung , Male , Pulmonary Fibrosis/chemically induced , Rats , Rats, Sprague-Dawley
8.
Biomed Pharmacother ; 115: 108889, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31071512

ABSTRACT

Amiodarone is a potent antidysrhythmic agent that can cause potentially life-threatening pulmonary fibrosis. Accumulating evidence has demonstrated that myofibroblast differentiation is related to the pathogenesis of pulmonary fibrosis. In the present study, we treated human embryonic lung fibroblasts (HELFs) with amiodarone, and investigated the relative molecular mechanism of amiodarone-induced pulmonary fibrosis and pathway determinants PD98059 (extracellular signal-regulated kinase (ERK) inhibitor) and SB203580 (p38 mitogen-activated protein kinase (MAPK) inhibitor). Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8). The secretion of collagen Ⅰ was detected by ELISA. The expressions of α-smooth muscle actin (α-SMA), vimentin, phosphorylated ERK1/2 (p-ERK1/2), ERK1/2, phosphorylated p38 MAPK (p-p38), and p38 MAPK were investigated using Western blot analysis. The levels of α-SMA and vimentin were also determined by immunofluorescence and qRT-PCR. We report that amiodarone promoted cell proliferation and collagen Ⅰ secretion, induced α-SMA and vimentin protein and mRNA expression accompanied by increased phosphorylation of ERK1/2 and p38 MAPK, and furthermore, PD98059 and SB203580 remarkably reduced the proliferative response of HELFs compared with amiodarone group and greatly attenuated α-SMA, vimentin and collagen Ⅰ protein production induced by amiodarone. Taken together, our study suggests that amiodarone regulates cell proliferation and myofibroblast differentiation in HELFs through modulating ERK1/2 and p38 MAPK pathways, and these signal pathways may therefore represent an attractive treatment modality in amiodarone-induced pulmonary fibrosis.


Subject(s)
Amiodarone/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , MAP Kinase Signaling System/physiology , Myofibroblasts/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Anti-Arrhythmia Agents/pharmacology , Flavonoids/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Humans , Imidazoles/pharmacology , Lung/cytology , Pyridines/pharmacology
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(12): 1461-1468, 2019 Dec 30.
Article in Chinese | MEDLINE | ID: mdl-31907154

ABSTRACT

OBJECTIVE: To evaluate the feasibility of applying intracranial lead reconstruction in deep brain stimulation (DBS) therapy for Parkinsonism. METHODS: We retrospectively collected the clinical data from 27 patients with Parkinson's disease (PD), who received bilateral subthalamic nucleus (STN) DBS therapy between January, 2016 and December, 2017. According to the position of the selected optimal stimulating contact of the implanted leads, the patients were divided into group A with the stimulating contacts of the bilateral leads in the STN, group B with unilateral stimulating contacts in the STN, and group C with bilateral stimulating contacts outside the STN. All the patients were assessed for improvement using Hoehn-Yahr stage, the third part of United Parkinson's Disease Rating Scale (UPDRS Ⅲ), Schwab and England Activities of Daily Living (SE-ADL), and L-dopa equivalent daily dose (LEDD). The consistency between the optimal stimulating contact selected by lead reconstruction and that by standard postoperative programming procedure was also evaluated. RESULTS: The patients in all the 3 groups showed postoperative improvements in Hoehn-Yahr stage, UPDRS Ⅲ score, SE-ADL score, and LEDD in the medication-off state. But at 12 months of the follow-up, such improvements were maintained only in the patients of group A. The optimal stimulating contacts selected by lead reconstruction and standard postoperative programming procedure had a matching rate of up to 77.78% (42/54), and the coordinates of the optimal contacts selected by the two methods showed no significant difference. CONCLUSIONS: Intracranial lead reconstruction facilitates the study of the association between the implant site of the leads and the clinical outcome of DBS therapy for PD and allows the precise selection of the optimal contact of the implanted leads in postoperative programming of DBS.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Activities of Daily Living , Humans , Retrospective Studies , Treatment Outcome
11.
J Insect Physiol ; 99: 39-46, 2017 05.
Article in English | MEDLINE | ID: mdl-28336369

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors of the paper. Some of the data of the work published was work of a different researcher (the principal investigator), and published without their permission. Furthermore, it has been realised that the analysis and calculation methods used for the gene expressions and some other results in this paper need to be tested further before publication.


Subject(s)
Colocasia/chemistry , Spodoptera/physiology , Volatile Organic Compounds/pharmacology , Animals , Female , Gene Expression Regulation , Male , Oviposition , Plant Leaves/chemistry , Receptors, Pheromone/genetics , Receptors, Pheromone/metabolism , Reproduction , Sex Attractants/pharmacology , Sexual Behavior, Animal/drug effects
12.
Sci Rep ; 5: 17320, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26611815

ABSTRACT

Pheromone and plant odorants are important for insect mating, foraging food sources and oviposition. To understand the molecular mechanisms regulating pheromone and odorant signaling, we employed qRT-PCR to study the circadian rhythms of ABP, OBP, PBP, and OR gene expression in the beet armyworm, Spodoptera exigua and their responses after a pre-exposure to sex pheromone compounds or plant volatiles. The neuronal responses of male S. exigua to 20 chemical compounds were recorded at three specific time periods using the electroantennogram. The results showed a circadian rhythm in the expression profiles of some chemosensory genes in the antennae similar to their behavioral rhythm. The expression profiles of OR3, OR6, OR11, OR13, OR16, OR18, Orco, ABP2, OBP1, OBP7, and PBP1, and EAG responses to chemical compounds, as well as their circadian rhythm were significantly affected after exposure to synthetic sex pheromones and plant volatiles. These findings provide the first evidence that the gene expression of chemosensory genes and olfactory sensitivity to sex pheromones are affected by pre-exposing insects to pheromone compounds and plant volatiles. It helps to understand the molecular mechanisms underlying pheromone activity, and the application of sex pheromones and plant volatiles in mating disruption or mass trapping.


Subject(s)
Gene Expression Regulation/drug effects , Olfactory Perception/drug effects , Sex Attractants/pharmacology , Spodoptera/drug effects , Volatile Organic Compounds/pharmacology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Arthropod Antennae/drug effects , Arthropod Antennae/physiology , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Female , Male , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Olfactory Perception/physiology , Plants/chemistry , Plants/metabolism , Sex Attractants/chemical synthesis , Sexual Behavior, Animal/drug effects , Sexual Behavior, Animal/physiology , Smell/drug effects , Smell/physiology , Spodoptera/genetics , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism
13.
Mol Biol Rep ; 40(11): 6333-49, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24057247

ABSTRACT

We newly sequenced mitochondrial genomes of Spodoptera litura and Cnaphalocrocis medinalis belonging to Lepidoptera to obtain further insight into mitochondrial genome evolution in this group and investigated the influence of optimal strategies on phylogenetic reconstruction of Lepidoptera. Estimation of p-distances of each mitochondrial gene for available taxonomic levels has shown the highest value in ND6, whereas the lowest values in COI and COII at the nucleotide level, suggesting different utility of each gene for different hierarchical group when individual genes are utilized for phylogenetic analysis. Phylogenetic analyses mainly yielded the relationships (((((Bombycoidea + Geometroidea) + Noctuoidea) + Pyraloidea) + Papilionoidea) + Tortricoidea), evidencing the polyphyly of Macrolepidoptera. The Noctuoidea concordantly recovered the familial relationships (((Arctiidae + Lymantriidae) + Noctuidae) + Notodontidae). The tests of optimality strategies, such as exclusion of third codon positions, inclusion of rRNA and tRNA genes, data partitioning, RY recoding approach, and recoding nucleotides into amino acids suggested that the majority of the strategies did not substantially alter phylogenetic topologies or nodal supports, except for the sister relationship between Lycaenidae and Pieridae only in the amino acid dataset, which was in contrast to the sister relationship between Lycaenidae and Nymphalidae in Papilionoidea in the remaining datasets.


Subject(s)
Genome, Mitochondrial , Lepidoptera/classification , Lepidoptera/genetics , Animals , DNA Barcoding, Taxonomic , Gene Order , Genes, Mitochondrial , Genetic Variation , Molecular Sequence Data , Moths/classification , Moths/genetics , Phylogeny
14.
PLoS One ; 7(8): e42056, 2012.
Article in English | MEDLINE | ID: mdl-22879905

ABSTRACT

The insect order Dermaptera, belonging to Polyneoptera, includes ∼2,000 extant species, but no dermapteran mitochondrial genome has been sequenced. We sequenced the complete mitochondrial genome of the free-living earwig, Challia fletcheri, compared its genomic features to other available mitochondrial sequences from polyneopterous insects. In addition, the Dermaptera, together with the other known polyneopteran mitochondrial genome sequences (protein coding, ribosomal RNA, and transfer RNA genes), were employed to understand the phylogeny of Polyneoptera, one of the least resolved insect phylogenies, with emphasis on the placement of Dermaptera. The complete mitochondrial genome of C. fletcheri presents the following several unusual features: the longest size in insects is 20,456 bp; it harbors the largest tandem repeat units (TRU) among insects; it displays T- and G-skewness on the major strand and A- and C-skewness on the minor strand, which is a reversal of the general pattern found in most insect mitochondrial genomes, and it possesses a unique gene arrangement characterized by a series of gene translocations and/or inversions. The reversal pattern of skewness is explained in terms of inversion of replication origin. All phylogenetic analyses consistently placed Dermaptera as the sister to Plecoptera, leaving them as the most basal lineage of Polyneoptera or sister to Ephemeroptera, and placed Odonata consistently as the most basal lineage of the Pterygota.


Subject(s)
Genome, Insect/genetics , Genome, Mitochondrial/genetics , Insecta/genetics , Phylogeny , AT Rich Sequence/genetics , Animals , Base Sequence , DNA, Intergenic/genetics , Gene Order/genetics , Genes, Mitochondrial/genetics , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Transfer/genetics , Tandem Repeat Sequences/genetics
15.
Mitochondrial DNA ; 23(3): 179-81, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22515209

ABSTRACT

The complete mitochondrial genome (mitogenome) of the seven-spotted lady beetle, Coccinella septempunctata (Coleoptera: Coccinellidae), which is one of the best known insects capable of predation, is described with an emphasis on the noteworthy composition of the A+T-rich region. The C. septempunctata genome consists of 2 rRNAs, 22 tRNAs, 13 protein-coding genes, and 1 control region, designated as the A+T-rich region in insects. Along with an unusually long A+T-rich region (4469 bp), the 18,965-bp long C. septempunctata mitogenome was the largest in Coleoptera. The A+T-rich region is composed of a 2214-bp long non-repeat region composed of 80.17% A/T nucleotides and a 2256-bp long repeat region composed of 65.71% A/T nucleotides. The repeat region harbors 32 identical 70-bp long tandem repeats plus one 15-bp long incomplete first repeat. These repeat sequences may possibly have been caused by slipped-strand mispairing and unequal crossing-over events during DNA replication.


Subject(s)
Coleoptera/genetics , Genome, Insect/genetics , Genome, Mitochondrial/genetics , Sequence Analysis, DNA , AT Rich Sequence/genetics , Animals , Base Composition , DNA, Mitochondrial/genetics , Genes, rRNA , Mitochondrial Proteins/genetics , Polymerase Chain Reaction/methods , RNA, Transfer/genetics , Tandem Repeat Sequences/genetics
16.
Biochem Genet ; 49(11-12): 760-87, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21786184

ABSTRACT

In an effort to gain greater insight into the nature of the population genetic structure of the pest insect Spodoptera litura (Lepidoptera: Noctuidae), tobacco cutworms were collected from six Korean and five Chinese localities, and their mitochondrial A+T-rich region and nuclear internal transcribed spacer 2 (ITS2) were cloned and sequenced. The A+T-rich region and nuclear ITS2 provided a maximum sequence divergence of 2.88 and 1.82%, respectively. Overall, a low level of genetic fixation (F(ST) = 0-0.02965 in the A+T-rich region and 0-0.34491 in ITS2) and no discernible isolated population were noted among most S. litura populations. Along with these results, the absence of genetic variance between Korea and China indicates a profound interrelation of the S. litura populations in the two countries, consistent with the current notion that S. litura has sufficient flight capacity for dispersal.


Subject(s)
AT Rich Sequence , Cell Nucleus/metabolism , DNA, Intergenic/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Spodoptera/genetics , Animals , Genetics, Population , Haplotypes , Phylogeny , Nicotiana/parasitology
17.
Mol Cells ; 30(5): 409-25, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20853063

ABSTRACT

The molecular phylogenetic relationships among true butterfly families (superfamily Papilionoidea) have been a matter of substantial controversy; this debate has led to several competing hypotheses. Two of the most compelling of those hypotheses involve the relationships of (Nymphalidae + Lycaenidae) + (Pieridae + Papilionidae) and (((Nymphalidae + Lycaenidae) + Pieridae) + Papilionidae). In this study, approximately 3,500 nucleotide sequences from cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and elongation factor-1 alpha (EF-1α) were sequenced from 83 species belonging to four true butterfly families, along with those of three outgroup species belonging to three lepidopteran superfamilies. These sequences were subjected to phylogenetic reconstruction via Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP) algorithms. The monophyletic Pieridae and monophyletic Papilionidae evidenced good recovery in all analyses, but in some analyses, the monophylies of the Lycaenidae and Nymphalidae were hampered by the inclusion of single species of the lycaenid subfamily Miletinae and the nymphalid subfamily Danainae. Excluding those singletons, all phylogenetic analyses among the four true butterfly families clearly identified the Nymphalidae as the sister to the Lycaenidae and identified this group as a sister to the Pieridae, with the Papilionidae identified as the most basal linage to the true butterfly, thus supporting the hypothesis: (Papilionidae + (Pieridae + (Nymphalidae + Lycaenidae))).


Subject(s)
Butterflies/genetics , Electron Transport Complex IV/genetics , Peptide Elongation Factor 1/genetics , RNA, Ribosomal, 16S/genetics , Animals , Base Sequence , Butterflies/classification , Butterflies/enzymology , DNA Barcoding, Taxonomic , Mitochondria/genetics , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...