Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Small ; : e2311818, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837617

ABSTRACT

The exceptional and substantial electron affinity, as well as the excellent chemical and thermal stability of transition metal oxides (TMOs), infuse infinite vitality into multifunctional applications, especially in the field of electromagnetic wave (EMW) absorption. Nonetheless, the suboptimal structural mechanical properties and absence of structural regulation continue to hinder the advancement of TMOs-based aerogels. Herein, a novel 2D tantalum disulfide (2H-TaS2) reduction strategy is demonstrated to synthesize Ta2O5/reduced graphene oxide (rGO) heterointerface aerogels with unique characters. As the prerequisite, the defects, interfaces, and configurations of aerogels are regulated by varying the concentration of 2H-TaS2 to ensure the Ta2O5/rGO heterointerface aerogels with appealing EMW absorption properties such as a minimum reflection loss (RLmin) of -61.93 dB and an effective absorption bandwidth (EAB) of 8.54 GHz (7.80-16.34 GHz). This strategy provides valuable insights for designing advanced EMW absorbers. Meanwhile, the aerogel exhibits favorable thermal insulation performance with a value of 36 mW m-1 K-1, outstanding fire resistance capability, and exceptional mechanical energy dissipation performance, making it promising for applications in the aerospace industry and consumer electronics devices.

2.
Small ; : e2402841, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693072

ABSTRACT

Developing lightweight composite with reversible switching between microwave (MW) absorption and electromagnetic interference (EMI) shielding is promising yet remains highly challenging due to the completely inconsistent attenuation mechanism for electromagnetic (EM) radiation. Here, a lightweight vanadium dioxide/expanded polymer microsphere composites foam (VO2/EPM) is designed and fabricated with porous structures and 3D VO2 interconnection, which possesses reversible switching function between MW absorption and EMI shielding under thermal stimulation. The VO2/EPM exhibits MW absorption with a broad effective absorption bandwidth of 3.25 GHz at room temperature (25 °C), while provides EMI shielding of 23.1 dB at moderately high temperature (100 °C). This reversible switching performance relies on the porous structure and tunability of electrical conductivity, complex permittivity, and impedance matching, which are substantially induced by the convertible crystal structure and electronic structure of VO2. Finite element simulation is employed to qualitatively investigate the change in interaction between EM waves and VO2/EPM before and after the phase transition. Moreover, the application of VO2/EPM is demonstrated with a reversible switching function in controlling wireless transmission on/off, showcasing its excellent cycling stability. This kind of smart material with a reversible switching function shows great potential in next-generation electronic devices.

3.
Nat Commun ; 15(1): 3682, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693121

ABSTRACT

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Subject(s)
Diet, High-Fat , Galectin 3 , Insulin Secretion , Insulin-Secreting Cells , Animals , Humans , Male , Mice , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat/adverse effects , Galectin 3/metabolism , Galectin 3/genetics , Glucose/metabolism , Insulin/metabolism , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout
4.
Nat Commun ; 15(1): 2526, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514666

ABSTRACT

ß-Cell dysfunction and ß-cell loss are hallmarks of type 2 diabetes (T2D). Here, we found that trimethylamine N-oxide (TMAO) at a similar concentration to that found in diabetes could directly decrease glucose-stimulated insulin secretion (GSIS) in MIN6 cells and primary islets from mice or humans. Elevation of TMAO levels impairs GSIS, ß-cell proportion, and glucose tolerance in male C57BL/6 J mice. TMAO inhibits calcium transients through NLRP3 inflammasome-related cytokines and induced Serca2 loss, and a Serca2 agonist reversed the effect of TMAO on ß-cell function in vitro and in vivo. Additionally, long-term TMAO exposure promotes ß-cell ER stress, dedifferentiation, and apoptosis and inhibits ß-cell transcriptional identity. Inhibition of TMAO production improves ß-cell GSIS, ß-cell proportion, and glucose tolerance in both male db/db and choline diet-fed mice. These observations identify a role for TMAO in ß-cell dysfunction and maintenance, and inhibition of TMAO could be an approach for the treatment of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Male , Animals , Mice , Mice, Inbred C57BL , Glucose/pharmacology , Methylamines/pharmacology , Signal Transduction , Insulin/pharmacology
5.
Nanomicro Lett ; 16(1): 134, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411757

ABSTRACT

The remarkable properties of carbon nanotubes (CNTs) have led to promising applications in the field of electromagnetic interference (EMI) shielding. However, for macroscopic CNT assemblies, such as CNT film, achieving high electrical and mechanical properties remains challenging, which heavily depends on the tube-tube interactions of CNTs. Herein, we develop a novel strategy based on metal-organic decomposition (MOD) to fabricate a flexible silver-carbon nanotube (Ag-CNT) film. The Ag particles are introduced in situ into the CNT film through annealing of MOD, leading to enhanced tube-tube interactions. As a result, the electrical conductivity of Ag-CNT film is up to 6.82 × 105 S m-1, and the EMI shielding effectiveness of Ag-CNT film with a thickness of ~ 7.8 µm exceeds 66 dB in the ultra-broad frequency range (3-40 GHz). The tensile strength and Young's modulus of Ag-CNT film increase from 30.09 ± 3.14 to 76.06 ± 6.20 MPa (~ 253%) and from 1.12 ± 0.33 to 8.90 ± 0.97 GPa (~ 795%), respectively. Moreover, the Ag-CNT film exhibits excellent near-field shielding performance, which can effectively block wireless transmission. This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices.

6.
J Am Chem Soc ; 146(7): 4985-4992, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38320266

ABSTRACT

Unsaturated amides represent common functional groups found in natural products and bioactive molecules and serve as versatile synthetic building blocks. Here, we report an iron(II)/cobalt(II) dual catalytic system for the syntheses of distally unsaturated amide derivatives. The transformation proceeds through an iron nitrenoid-mediated 1,5-hydrogen atom transfer (1,5-HAT) mechanism. Subsequently, the radical intermediate undergoes hydrogen atom abstraction from vicinal methylene by a cobaloxime catalyst, efficiently yielding ß,γ- or γ,δ-unsaturated amide derivatives under mild conditions. The efficiency of Co-mediated HAT can be tuned by varying different auxiliaries, highlighting the generality of this protocol. Remarkably, this desaturation protocol is also amenable to practical scalability, enabling the synthesis of unsaturated carbamates and ureas, which can be readily converted into various valuable molecules.

7.
J Am Chem Soc ; 146(7): 4795-4802, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38329998

ABSTRACT

An iron/chromium system (Fe(OAc)2, CpCr(CO)3H) catalyzes the preparation of ß,γ- or γ,δ-unsaturated amides from 1,4,2-dioxazol-5-ones. An acyl nitrenoid iron complex seems likely to be responsible for C-H activation. A cascade of three H• transfer steps appears to be involved: (i) the abstraction of H• from a remote C-H bond by the nitrenoid N, (ii) the transfer of H• from Cr to N, and (iii) the abstraction of H• from a radical substituent by the Cr•. The observed kinetic isotope effects are consistent with the proposed mechanism if nitrenoid formation is the rate-determining step. The Fe/Cr catalysts can also desaturate substituted 1,4,2-dioxazol-5-ones to 3,5-dienamides.

8.
ACS Med Chem Lett ; 14(9): 1257-1265, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37736168

ABSTRACT

Both galectin-3 and galectin-8 are involved in cell adhesion, migration, apoptosis, angiogenesis, and inflammatory processes by recognizing galactose-containing glycoproteins. Inhibiting galectin-3/8 activities is a potential treatment for cancer and tissue fibrosis. Herein, a series of novel N-arylsulfonyl-5-aryloxy-indole-2-carboxamide derivatives was disclosed as dual inhibitors toward galectin-3 and galectin-8 C-terminal domain with Kd values of low micromolar level (Cpd53, gal-3: Kd= 4.12 µM, gal-8C: Kd= 6.04 µM; Cpd57, gal-3: Kd= 12.8 µM, gal-8C: Kd= 2.06 µM), which are the most potent and selective noncarbohydrate-based inhibitors toward gal-3/8 isoforms to date. The molecular docking investigations suggested that the unique amino acids Arg144 in galectin-3 and Ser213 in galectin-8C could contribute to their potency and selectivity. The scratch wound assay demonstrated that Cpd53 and Cpd57 were able to inhibit the MRC-5 lung fibroblast cells migration as well. This class of inhibitors could serve as a new starting point for further discovering structurally distinct gal-3 and gal-8C inhibitors to be used in cancer and tissue fibrosis treatment.

9.
Nanomicro Lett ; 15(1): 106, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37071313

ABSTRACT

Low-dimensional transition metal dichalcogenides (TMDs) have unique electronic structure, vibration modes, and physicochemical properties, making them suitable for fundamental studies and cutting-edge applications such as silicon electronics, optoelectronics, and bioelectronics. However, the brittleness, low toughness, and poor mechanical and electrical stabilities of TMD-based films limit their application. Herein, a TaS2 freestanding film with ultralow void ratio of 6.01% is restacked under the effect of bond-free van der Waals (vdW) interactions within the staggered 2H-TaS2 nanosheets. The restacked films demonstrated an exceptionally high electrical conductivity of 2,666 S cm-1, electromagnetic interference shielding effectiveness (EMI SE) of 41.8 dB, and absolute EMI SE (SSE/t) of 27,859 dB cm2 g-1, which is the highest value reported for TMD-based materials. The bond-free vdW interactions between the adjacent 2H-TaS2 nanosheets provide a natural interfacial strain relaxation, achieving excellent flexibility without rupture after 1,000 bends. In addition, the TaS2 nanosheets are further combined with the polymer fibers of bacterial cellulose and aramid nanofibers via electrostatic interactions to significantly enhance the tensile strength and flexibility of the films while maintaining their high electrical conductivity and EMI SE.This work provides promising alternatives for conventional materials used in EMI shielding and nanodevices.

10.
Small Methods ; 7(4): e2201694, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36802141

ABSTRACT

MXenes with unique physicochemical properties have shown substantial potential in electromagnetic interference (EMI) shielding. However, the chemical instability and mechanical fragility of MXenes has become a major hurdle for their application. Abundant strategies have been dedicated to improving the oxidation stability of colloidal solution or mechanical properties of films, which always come at the expense of electrical conductivity and chemical compatibility. Here, hydrogen bond (H-bond) and coordination bond are employed to achieve chemical and colloidal stability of MXenes (0.1 mg mL-1 ) by occupying the reaction sites of Ti3 C2 Tx attacking of water and oxygen molecules. Compared to the Ti3 C2 Tx , the Ti3 C2 Tx modified with alanine via H-bond shows significantly improved oxidation stability (at room temperature over 35 days), while the Ti3 C2 Tx modified with cysteine by synergy of H-bond and coordination bond can be maintained even after 120 days. Simulation and experimental results verify the formation of H-bond and Ti-S bond by a Lewis acid-base interaction between Ti3 C2 Tx and cysteine. Furthermore, the synergy strategy significantly improves the mechanical strength of the assembled film (up to 78.1 ± 7.9 MPa), corresponding the increment of 203% compared to untreated one, almost without compromising the electrical conductivity and EMI shielding performance.

11.
Small ; 19(4): e2205716, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36437045

ABSTRACT

Multifunctional thermal management materials with highly efficient electromagnetic wave (EMW) absorption performance are urgently required to tackle the heat dissipation and electromagnetic interference issues of high integrated electronics. However, the high thermal conductivity (λ) and outstanding EMW absorption performance are often incompatible with each other in a single material. Herein, a through-thickness arrayed NiCo2 O4 /graphene oxide/carbon fibers (NiCO@CFs) elastomer with integrated functionalities of high thermal conductivity, highly efficient EMW absorption, and excellent compressibility is reported. The NiCO@CFs elastomer realizes a high out-of-plane thermal conductivity of 15.55 W m-1  K-1 , due to the through-thickness vertically aligned CFs framework. Moreover, the unique horizontal segregated magnetic network effectively reduces the electrical contact between the CFs, which significantly enhances impedance matching of NiCO@CFs elastomer. As a result, the vertically arrayed NiCO@CFs elastomer synchronously exhibits ultrabroad effective absorption bandwidth of 8.25 GHz (9.75-18 GHz) at a thickness of 2.4 mm, good impedance matching, and a minimum reflection loss (RLmin ) of -55.15 dB. Given these outstanding findings, the multifunctional arrayed NiCO@CFs elastomer opens an avenue for applications in EMW absorption and thermal management. This strategy of constructing thermal/electrical/mechanical pathways provides a promising way for the high-performance multifunctional materials in electronic devices.

12.
Hepatology ; 78(2): 562-577, 2023 08 01.
Article in English | MEDLINE | ID: mdl-35931467

ABSTRACT

BACKGROUND AND AIMS: NAFLD is the most prevalent chronic liver disease worldwide and has emerged as a serious public health issue with no approved treatment. The development of NAFLD is strongly associated with hepatic lipid content, and patients with NAFLD have significantly higher rates of hepatic de novo lipogenesis (DNL) than lean individuals. Leukotriene B4 (LTB4), a metabolite of arachidonic acid, is dramatically increased in obesity and plays important role in proinflammatory cytokine production and insulin resistance. But the role of liver LTB4/LTB4 receptor 1 (Ltb4r1) in lipid metabolism is unclear. APPROACH AND RESULTS: Hepatocyte-specific knockout (HKO) of Ltb4r1 improved hepatic steatosis and systemic insulin resistance in both diet-induced and genetically induced obese mice. The mRNA level of key enzymes involved in DNL and fatty acid esterification decreased in Ltb4r1 HKO obese mice. LTB4/Ltb4r1 directly promoted lipogenesis in HepG2 cells and primary hepatocytes. Mechanically, LTB4/Ltb4r1 promoted lipogenesis by activating the cAMP-protein kinase A (PKA)-inositol-requiring enzyme 1α (IRE1α)-spliced X-box-binding protein 1 (XBP1s) axis in hepatocytes, which in turn promoted the expression of lipogenesis genes regulated by XBP1s. In addition, Ltb4r1 suppression through the Ltb4r1 inhibitor or lentivirus-short hairpin RNA delivery alleviated the fatty liver phenotype in obese mice. CONCLUSIONS: LTB4/Ltb4r1 promotes hepatocyte lipogenesis directly by activating PKA-IRE1α-XBP1s to promote lipogenic gene expression. Inhibition of hepatocyte Ltb4r1 improved hepatic steatosis and insulin resistance. Ltb4r1 is a potential therapeutic target for NAFLD.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Leukotriene B4/metabolism , Leukotriene B4/adverse effects , Leukotriene B4/metabolism , Mice, Obese , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Hepatocytes/metabolism , Liver/metabolism , Obesity/complications , Obesity/genetics , Lipogenesis/physiology , Diet, High-Fat
13.
Dalton Trans ; 51(31): 11620-11624, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35895115

ABSTRACT

A pincer iron(III) catalyst for the oxidation and chlorination of C(sp3)-H bonds was developed. Oxidation of a diagnostic substrate cis-decalin implies that a long-lived carbon-centred radical is involved. Mechanistic studies suggest that an Fe-oxo species could be responsible for the rate-determining C-H activation step. This report expands the scope of non-heme catalysts for C-H functionalisation.


Subject(s)
Halogenation , Iron , Carbon/chemistry , Catalysis , Iron/chemistry , Oxidation-Reduction
14.
ACS Nano ; 16(6): 9254-9266, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35674718

ABSTRACT

The rapid increase of operation speed, transmission efficiency, and power density of miniaturized devices leads to a rising demand for electromagnetic interference (EMI) shielding and thermal management materials in the semiconductor industry. Therefore, it is essential to improve both the EMI shielding and thermal conductive properties of commonly used polyolefin components (such as polyethylene (PE)) in electronic systems. Currently, melt compounding is the most common method to fabricate polyolefin composites, but the difficulty of filler dispersion and high resistance at the filler/filler or filler/matrix interface limits their properties. Here, a fold fabrication strategy was proposed to prepare PE composites by incorporation of a well-aligned, seamless graphene framework premodified with MXene nanosheets into the matrix. We demonstrate that the physical properties of the composites can be further improved at the same filler loading by nanoscale interface engineering: the formation of hydrogen bonds at the graphene/MXene interface and the development of a seamlessly interconnected graphene framework. The obtained PE composites exhibit an EMI shielding property of ∼61.0 dB and a thermal conductivity of 9.26 W m-1 K-1 at a low filler content (∼3 wt %, including ∼0.4 wt % MXene). Moreover, other thermoplastic composites with the same results can also be produced based on our method. Our study provides an idea toward rational design of the filler interface to prepare high-performance polymer composites for use in microelectronics and microsystems.

15.
ACS Appl Mater Interfaces ; 14(2): 3302-3314, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34991311

ABSTRACT

Highly conductive polymer foam with light weight, flexibility, and high-performance electromagnetic interference (EMI) shielding is highly desired in the fields of aerospace, communication, and high-power electronic equipment, especially in the board-level packaging. However, traditional technology for preparing conductive polymer foam such as electroless plating and electroplating involves serious pollution, a complex fabrication process, and high cost. It is urgent to develop a facile method for the fabrication of highly conductive polymer foam. Herein, we demonstrated a lightweight and flexible silver-wrapped melamine foam (Ag@ME) via in situ sintering of metal-organic decomposition (MOD) at a low temperature (200 °C) on the ME skeleton modified with poly(ethylene imine). The Ag@ME with a continuous 3D conductive network exhibits good compressibility, an excellent conductivity of 158.4 S/m, and a remarkable EMI shielding effectiveness of 63 dB in the broad frequency of 8.2-40 GHz covering X-, Ku-, K-, and Ka-bands, while the volume content is only 2.03 vol %. The attenuation mechanism of Ag@ME for EM waves is systematically investigated by both EM simulation and experimental analysis. Moreover, the practical EMI shielding application of Ag@ME in board-level packaging is demonstrated and it shows outstanding near-field shielding performance. This novel strategy for fabrication of highly conductive polymer foam with low cost and non-pollution could potentially promote the practical applications of Ag@ME in the field of EMI shielding.

16.
Eur J Pharmacol ; 891: 173723, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33159933

ABSTRACT

Endoplasmic reticulum (ER) stress has been considered as a promising strategy in developing novel therapeutic agents for cardiovascular diseases through inhibiting cardiomyocyte apoptosis. Protocatechualdehyde (PCA) is a natural phenolic compound from medicinal plant Salvia miltiorrhiza with cardiomyocyte protection. However, the potential mechanism of PCA on cardiovascular ischemic injury is largely unexplored. Here, we found that PCA exerted markedly anti-apoptotic effect in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced H9c2 cells (Rat embryonic ventricular H9c2 cardiomyocytes), which was detected by 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH), Hoechst 33258 and acridine orange/ethidium bromide (AO/EB) assays. PCA also obviously protected cardiomyocytes in myocardial fibrosis model of mice, which was determined by hematoxylin-eosin (HE) staining and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining. Transcriptomics coupled with bioinformatics analysis revealed a complex pharmacological signaling network especially for PCA-mediated ER stress on cardiomyocytes. Further mechanism study suggested that PCA suppressed ER stress via inhibiting protein kinase R-like ER kinase (PERK), inositol-requiring enzyme1α (IRE1α), and transcription factor 6α (ATF6α) signaling pathway through Western blot, DIOC6 and ER-Tracker Red staining, leading to a protective effect against ER stress-mediated cardiomyocyte apoptosis. Taken together, our observations suggest that PCA is a major component from Salvia miltiorrhiza against cardiovascular ischemic injury by suppressing ER stress-associated PERK, IRE1α and ATF6α signaling pathways.


Subject(s)
Activating Transcription Factor 6/metabolism , Apoptosis/drug effects , Benzaldehydes/pharmacology , Catechols/pharmacology , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Multienzyme Complexes/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Protein Serine-Threonine Kinases/metabolism , eIF-2 Kinase/metabolism , Activating Transcription Factor 6/genetics , Animals , Cell Hypoxia , Cell Line , Disease Models, Animal , Endoribonucleases/genetics , Fibrosis , Glucose/deficiency , Male , Mice, Inbred C57BL , Multienzyme Complexes/genetics , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Protein Serine-Threonine Kinases/genetics , Rats , Rats, Sprague-Dawley , Signal Transduction , Transcriptome , eIF-2 Kinase/genetics
17.
ACS Chem Neurosci ; 11(24): 4223-4230, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33225685

ABSTRACT

Cerebral ischemia is accompanied by mitochondrial integrity destruction. Thus, reversion of mitochondrial damage holds great potential for cerebral ischemia therapy. As a crucial Bcl-2 family member, pro-apoptotic Bax protein is a main effector of mitochondrial permeabilization and plays an important role in mitochondrial homeostasis. However, there is still a lack of an effective cerebral protective strategy through selectively targeting Bax. In this study, we reported that natural small-molecule protosappanin A (PTA) showed a significant mitochondrial protective effect on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cells injury through increasing ATP production and maintaining mitochondrial DNA (mtDNA) content. The mechanism study revealed that PTA selectively induced pro-apoptotic protein Bax degradation, without affecting other Bcl-2 family members such as Bcl-2, Bcl-xl, Bad, Puma, Bid, Bim, and Bik. In addition, we found that PTA promoted the association of autophagosomal marker LC3B to Bax for its degradation via an autophagy-dependent manner but not the ubiquitin-proteasome pathway. Collectively, our findings offered a new pharmacological strategy for maintaining mitochondrial function by inducing autophagic degradation of Bax and also provided a novel drug candidate against ischemic neuronal injury.


Subject(s)
Apoptosis , Mitochondria , Animals , Autophagy , Homeostasis , Phenols , Rats , bcl-2-Associated X Protein
18.
ACS Nano ; 14(10): 14134-14145, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33044056

ABSTRACT

Flexible and lightweight high-performance electromagnetic interference shielding materials with minimal thickness, excellent mechanical properties, and outstanding reliability are highly desired in the field of fifth-generation (5G) communication, yet remain extremely challenging to manufacture. Herein, we prepared an ultrathin densified carbon nanotube (CNT) film with superior mechanical properties and ultrahigh shielding effectiveness. Upon complete removal of impurities in pristine CNT film, charge separation in individual CNTs induced by polar molecules leads to strong CNT-CNT attraction and film densification, which significantly improve the electrical conductivity, shielding performance, and mechanical strength. The tensile strength is up to 822 ± 21 MPa, meanwhile the electrical conductivity is as high as 902,712 S/m, and the density is only 1.39 g cm-3. Notably, the shielding effectiveness is over 51 dB with a thickness of merely 1.85 µm in the broad frequency range of 4-18 GHz, and it reaches to ∼82 dB at 6.36 µm and ∼101 dB at 14.7 µm, respectively. Further, such CNT film exhibits excellent reliability after an extended period in strong acid/alkali, high temperature, and high humidity. It demonstrates the best overall performance among representative shielding materials by far, representing a critical breakthrough in the preparation of shielding film toward applications in wearable electronics and 5G communication.

19.
Theranostics ; 10(2): 797-815, 2020.
Article in English | MEDLINE | ID: mdl-31903151

ABSTRACT

Background: Histone post-translational modifications (PTMs) are involved in various biological processes such as transcriptional activation, chromosome packaging, and DNA repair. Previous studies mainly focused on PTMs by directly targeting histone-modifying enzymes such as HDACs and HATs. Methods and Results: In this study, we discovered a previously unexplored regulation mechanism for histone PTMs by targeting transcription regulation factor 14-3-3ζ. Mechanistic studies revealed 14-3-3ζ dimerization as a key prerequisite, which could be dynamically induced via an allosteric effect. The selective inhibition of 14-3-3ζ dimer interaction with histone H3 modulated histone H3 PTMs by exposing specific modification sites including acetylation, trimethylation, and phosphorylation, and reprogrammed gene transcription profiles for autophagy-lysosome function and endoplasmic reticulum stress. Conclusion: Our findings demonstrate the feasibility of editing histone PTM patterns by targeting transcription regulation factor 14-3-3ζ, and provide a distinctive PTM editing strategy which differs from current histone modification approaches.


Subject(s)
14-3-3 Proteins/antagonists & inhibitors , Autophagy , Gene Expression Regulation , Histones/metabolism , Phenols/pharmacology , Protein Multimerization , Protein Processing, Post-Translational , Acetylation , Allosteric Regulation , Animals , Cell Line , Histones/chemistry , Humans , Male , Methylation , Mice , Mice, Inbred BALB C , Middle Aged , Models, Animal , Phosphorylation , Rats , Rats, Sprague-Dawley
20.
Eur J Pharmacol ; 855: 183-191, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31082368

ABSTRACT

Myocardial fibrosis is associated with cardiovascular remodeling, which is characterized by abnormal collagen architecture. However, there are not yet effective strategies targeting this abnormal pathological process. The purpose of our study is to investigate the effect of protocatechualdehyde (PCA) on myocardial fibrosis for exploring the underlying target protein and molecular mechanism. We found PCA significantly suppressed isoprenaline (ISO)-induced fibrosis and collagen deposition in myocardial tissue. Then, the direct pharmacological target of PCA was identified as collagen I using cellular thermal shift assay (CETSA) coupled with stable isotope labeling with amino acids in cell culture (SILAC) technology. Surface plasmon resonance (SPR) analysis further confirmed the specific binding of PCA with collagen I. Moreover, collagen self-assembly assay and atomic force microscope analysis confirmed that PCA directly modulated collagen conformational dynamics. LC-MS/MS analysis was applied to determine lysine residues as the binding sites of PCA on collagen I by covalently cross-linking reaction. Collectively, our study suggests that PCA controls cardiovascular remodeling by mediating diffuse interstitial myocardial fibrosis. Moreover, directly targeting collagen may be a promising strategy for the treatment of heart failure and resultant myocardial fibrosis.


Subject(s)
Benzaldehydes/pharmacology , Catechols/pharmacology , Collagen/chemistry , Myocardium/pathology , Animals , Cell Line , Fibrosis , Heart Failure/pathology , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Protein Conformation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...