Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990799

ABSTRACT

Hybrid N2-CO2 huff-n-puff (HnP) has been experimentally demonstrated to be a promising approach for improving oil recovery from tight/ultratight shale oil reservoirs. Despite this, the detailed soaking process and interaction mechanisms remain unclear. Adopting molecular dynamic simulations, the soaking behavior of hybrid N2-CO2 HnP was investigated at the molecular and atomic levels. Initially, the soaking process of fluid pressure equilibrium after injection pressure decays in a single matrix nanopore connected to a shale oil reservoir is studied. The study revealed that counter-current and cocurrent displacement processes exist during the CO2 and hybrid N2-CO2 soaking, but cocurrent displacement occurs much later than counter-current displacement. Although the total displacement efficiency of the hybrid N2-CO2 soaking system is lower than that of the CO2 soaking system, the cocurrent displacement initiates earlier in the hybrid N2-CO2 soaking system than in the CO2 soaking system. Moreover, the N2 soaking process is characterized by only counter-current displacement. Next, the soaking process of fluid pressure nonequilibrium before the injection pressure decays is investigated. It was discovered that counter-current and cocurrent displacement processes initiate simultaneously during the CO2, N2, and hybrid N2-CO2 soaking process, but cocurrent displacement exerts a dominant influence. During the CO2 soaking process, many hydrocarbon molecules in the nanopore are dissolved in CO2 while simultaneously exhibiting a substantial retention effect in the nanopore. After pure N2 injection, there is a tendency to form a favorable path of N2 through the oil phase. The injection of hybrid CO2-N2 facilitates the most significant cocurrent displacement effect and the reduction in residual oil retained in the nanopore during the soaking process, thus resulting in the best oil recovery. However, the increase rate in total displacement efficiencies of the different soaking systems over time (especially the hybrid N2-CO2 soaking system) was significantly larger before than after injection pressure decays. Additionally, the displacement effect induced by oil volume swelling is significantly restricted before the injection pressure decays compared to the soaking process after the injection pressure decays. This study explains the role of CO2-induced oil swelling and N2-induced elastic energy played by hybrid N2 and CO2 at different stages of the hybrid N2-CO2 soaking process before and after pressure decays and provides theoretical insights for hybrid gas HnP-enhanced recovery. These pore-scale results highlight the importance of injection pressure and medium composition during the soaking process in unconventional oil reservoirs.

SELECTION OF CITATIONS
SEARCH DETAIL
...