Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Sci Total Environ ; 945: 174141, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901597

ABSTRACT

Development of effective pollution mitigation strategies require an understanding of the pollution sources and factors influencing fecal pollution loading. Fecal contamination of Turkey Creek in Gulfport, Mississippi, one of the nation's most endangered creeks, was studied through a multi-tiered approach. Over a period of approximately two years, four stations across the watershed were analyzed for nutrients, enumeration of E. coli, male-specific coliphages and bioinformatic analysis of sediment microbial communities. The results demonstrated that two stations, one adjacent to a lift station and one just upstream from the wastewater-treatment plant, were the most impacted. The station adjacent to land containing a few livestock was the least impaired. While genotyping of male-specific coliphage viruses generally revealed a mixed viral signature (human and other animals), fecal contamination at the station near the wastewater treatment plant exhibited predominant impact by municipal sewage. Fecal indicator loadings were positively associated with antecedent rainfall for three of four stations. No associations were noted between fecal indicator loadings and any of the nutrients. Taxonomic signatures of creek sediment were unique to each sample station, but the sediment microbial community did overlap somewhat following major rain events. No presence of Escherichia coli (E. coli) or enterococci were found in the sediment. At some of the stations it was evident that rainfall was not always the primary driver of fecal transport. Repeated monitoring and analysis of a variety of parameters presented in this study determined that point and non-point sources of fecal pollution varied spatially in association with treated and/or untreated sewage.

2.
Sci Total Environ ; 932: 172927, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719057

ABSTRACT

Tire-derived rubber crumbs (RC), as a new type of microplastics (MPs), harms both the environment and human health. Excessive use of plastic, the decomposition of which generates microplastic particles, in current agricultural practices poses a significant threat to the sustainability of agricultural ecosystems, worldwide food security and human health. In this study, the application of biochar, a carbon-rich material, to soil was explored, especially in the evaluation of synthetic biochar-based community (SynCom) to alleviate RC-MP-induced stress on plant growth and soil physicochemical properties and soil microbial communities in peanuts. The results revealed that RC-MPs significantly reduced peanut shoot dry weight, root vigor, nodule quantity, plant enzyme activity, soil urease and dehydrogenase activity, as well as soil available potassium, and bacterial abundance. Moreover, the study led to the identification highly effective plant growth-promoting rhizobacteria (PGPR) from the peanut rhizosphere, which were then integrated into a SynCom and immobilized within biochar. Application of biochar-based SynCom in RC-MPs contaminated soil significantly increased peanut biomass, root vigor, nodule number, and antioxidant enzyme activity, alongside enhancing soil enzyme activity and rhizosphere bacterial abundance. Interestingly, under high-dose RC-MPs treatment, the relative abundance of rhizosphere bacteria decreased significantly, but their diversity increased significantly and exhibited distinct clustering phenomenon. In summary, the investigated biochar-based SynCom proved to be a potential soil amendment to mitigate the deleterious effects of RC-MPs on peanuts and preserve soil microbial functionality. This presents a promising solution to the challenges posed by contaminated soil, offering new avenues for remediation.


Subject(s)
Arachis , Charcoal , Microplastics , Soil Microbiology , Soil Pollutants , Soil , Charcoal/chemistry , Arachis/microbiology , Soil Pollutants/analysis , Soil/chemistry , Microbiota , Rhizosphere , Environmental Restoration and Remediation/methods
3.
J Environ Manage ; 348: 119133, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37839201

ABSTRACT

The development of alginate-based composites in agriculture to combat nutrient loss and drought for sustainable development has drawn increasing attention in the scientific community. Existing studies are however scattered, and the retention and slow-release mechanisms of alginate-based composites are not well understood. This paper systematically reviews the current literature on the preparation, characterization, and agricultural applications of various alginate-based composites. The synthesis methods of alginate-based composites are firstly summarized, followed by a review of available analytical techniques to characterize alginate-based composites for the attainment of their desired performance. Secondly, the performance and controlling factors for agricultural applications of alginate-based composites are discussed, including aquasorb, slow-release fertilizer, soil amendment, microbial inoculants, and controlled release of pesticides for pest management. Finally, suggestions and future perspectives are proposed to expand the applications of alginate-based composites for sustainable agriculture.


Subject(s)
Agricultural Inoculants , Pesticides , Soil , Alginates , Agriculture/methods , Fertilizers/analysis
4.
Climate (Basel) ; 11(5): 1-13, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37593169

ABSTRACT

Sediment load in rivers is recognized as both a carrier and a potential source of contaminants. Sediment deposition significantly changes river flow and morphology, thereby affecting stream hydrology and aquatic life. We projected sediment load from the Pearl River basin (PRB), Mississippi into the northern Gulf of Mexico under a future climate with afforestation using the SWAT (Soil and Water Assessment Tool)-based HAWQS (Hydrologic and Water Quality System) model. Three simulation scenarios were developed in this study: (1) the past scenario for estimating the 40-year sediment load from 1981 to 2020; (2) the future scenario for projecting the 40-year sediment load from 2025 to 2064, and (3) the future afforestation scenario that was the same as the future scenario, except for converting the rangeland located in the middle section of the Pearl River watershed of the PRB into the mixed forest land cover. Simulations showed a 16% decrease in sediment load for the future scenario in comparison to the past scenario due to the decrease in future surface runoff. Over both the past and future 40 years, the monthly maximum and minimum sediment loads occurred, respectively, in April and August; whereas the seasonal sediment load followed the order: spring > winter > summer > fall. Among the four seasons, winter and spring accounted for about 86% of sediment load for both scenarios. Under the future 40-year climate conditions, a 10% reduction in annual average sediment load with afforestation was observed in comparison to without afforestation. This study provides new insights into how a future climate with afforestation would affect sediment load into the northern Gulf of Mexico.

5.
Bioresour Technol ; 386: 129482, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37451511

ABSTRACT

Hydrochars formed by hydrothermal carbonization of hickory wood, bamboo, and wheat straw at 200 °C were modified by potassium permanganate (KMnO4) for the sorption of Pb(II), Cd(II), and Cu(II). The wheat straw hydrochar (WSHyC) modified with 0.2 M KMnO4 resulted in the most promising adsorbent (WSHyC-0.2KMnO4). Characterization of WSHyC and WSHyC-0.2KMnO4 revealed that the modified hydrochar features large specific surface area, rich of surface oxygenic functional groups (OCFG), and a significant amount of MnOx micro-particles. Batch adsorption experiments indicated that the adsorption rate by WSHyC-0.2KMnO4 was faster than for WSHyC, attaining equilibrium after around 5 h. The optimum adsorption capacity (Langmuir) of Pb(II), Cd(II), and Cu(II) by WSHyC-0.2KMnO4 was 189.24, 29.06 and 32.68 mg/g, respectively, 12 âˆ¼ 17 times greater than by WSHyC. The significantly enhanced heavy metal adsorption can be attributable to the increased OCFG and MnOx microparticles on the surface, thereby promoting ion exchange, electrostatic interactions, and complexation mechanisms.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Cadmium , Potassium Permanganate , Charcoal , Lead , Adsorption , Triticum , Kinetics
6.
J Hazard Mater ; 457: 131738, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37285788

ABSTRACT

The increasing environmental and human health concerns about lead in the environment have stimulated scientists to search for microbial processes as innovative bioremediation strategies for a suite of different contaminated media. In this paper, we provide a compressive synthesis of existing research on microbial mediated biogeochemical processes that transform lead into recalcitrant precipitates of phosphate, sulfide, and carbonate, in a genetic, metabolic, and systematics context as they relate to application in both laboratory and field immobilization of environmental lead. Specifically, we focus on microbial functionalities of phosphate solubilization, sulfate reduction, and carbonate synthesis related to their respective mechanisms that immobilize lead through biomineralization and biosorption. The contributions of specific microbes, both single isolates or consortia, to actual or potential applications in environmental remediation are discussed. While many of the approaches are successful under carefully controlled laboratory conditions, field application requires optimization for a host of variables, including microbial competitiveness, soil physical and chemical parameters, metal concentrations, and co-contaminants. This review challenges the reader to consider bioremediation approaches that maximize microbial competitiveness, metabolism, and the associated molecular mechanisms for future engineering applications. Ultimately, we outline important research directions to bridge future scientific research activities with practical applications for bioremediation of lead and other toxic metals in environmental systems.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Metals, Heavy/metabolism , Biodegradation, Environmental , Lead , Soil Microbiology , Phosphates , Soil Pollutants/metabolism , Soil
7.
Plant Biotechnol J ; 21(9): 1785-1798, 2023 09.
Article in English | MEDLINE | ID: mdl-37256840

ABSTRACT

Cultivated peanut (Arachis hypogaea L.) is an important oil and cash crop. Pod size is one of the major traits determining yield and commodity characteristic of peanut. Fine mapping of quantitative trait locus (QTL) and identification of candidate genes associated with pod size are essential for genetic improvement and molecular breeding of peanut varieties. In this study, a major QTL related to pod size, qAHPS07, was fine mapped to a 36.46 kb interval on chromosome A07 using F2 , recombinant inbred line (RIL) and secondary F2 populations. qAHPS07 explained 38.6%, 23.35%, 37.48%, 25.94% of the phenotypic variation for single pod weight (SPW), pod length (PL), pod width (PW) and pod shell thickness (PST), respectively. Whole genome resequencing and gene expression analysis revealed that a RuvB-like 2 protein coding gene AhRUVBL2 was the most likely candidate for qAHPS07. Overexpression of AhRUVBL2 in Arabidopsis led to larger seeds and plants than the wild type. AhRUVBL2-silenced peanut seedlings represented small leaves and shorter main stems. Three haplotypes were identified according to three SNPs in the promoter of AhRUVBL2 among 119 peanut accessions. Among them, SPW, PW and PST of accessions carrying Hap_ATT represent 17.6%, 11.2% and 26.3% higher than those carrying Hap_GAC,respectively. In addition, a functional marker of AhRUVBL2 was developed. Taken together, our study identified a key functional gene of peanut pod size, which provides new insights into peanut pod size regulation mechanism and offers practicable markers for the genetic improvement of pod size-related traits in peanut breeding.


Subject(s)
Arachis , Plant Breeding , Arachis/genetics , Chromosome Mapping , Quantitative Trait Loci/genetics , Phenotype
8.
Ecotoxicol Environ Saf ; 249: 114430, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-37192935

ABSTRACT

The effect of dietary lead on the intestinal microbiome has not been fully elucidated. To determine if there was an association between microflora modulation, predicted functional genes, and Pb exposure, mice were provided diets amended with increasing concentrations of a single lead compound, lead acetate, or a well characterized complex reference soil containing lead, i.e. 6.25-25 mg/kg Pb acetate (PbOAc) or 7.5-30 mg/kg Pb in reference soil SRM 2710a having 0.552 % Pb among other heavy metals such as Cd. Feces and ceca were collected following 9 days of treatment and the microbiome analyzed by 16 S rRNA gene sequencing. Treatment effects on the microbiome were observed in both feces and ceca of mice. Changes in the cecal microbiomes of mice fed Pb as Pb acetate or as a constituent in SRM 2710a were statistically different except for a few exceptions regardless of dietary source. This was accompanied by increased average abundance of functional genes associated with metal resistance, including those related to siderophore synthesis and arsenic and/or mercury detoxification. Akkermansia, a common gut bacterium, was the highest ranked species in control microbiomes whereas Lactobacillus ranked highest in treated mice. Firmicutes/Bacteroidetes ratios in the ceca of SRM 2710a treated mice increased more than with PbOAc, suggestive of changes in gut microbiome metabolism that promotes obesity. Predicted functional gene average abundance related to carbohydrate, lipid, and/or fatty acid biosynthesis and degradation were greater in the cecal microbiome of SRM 2710a treated mice. Bacilli/Clostridia increased in the ceca of PbOAc treated mice and may be indicative of increased risk of host sepsis. Family Deferribacteraceae also was modulated by PbOAc or SRM 2710a possibly impacting inflammatory response. Understanding the relationship between microbiome composition, predicted functional genes, and Pb concentration, especially in soil, may provide new insights into the utility of various remediation methodologies that minimize dysbiosis and modulate health effects, thus assisting in the selection of an optimal treatment for contaminated sites.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Mice , Gastrointestinal Microbiome/genetics , Lead/toxicity , Lead/metabolism , Bacteria/metabolism , Firmicutes/metabolism , Soil
9.
Sci Total Environ ; 882: 163474, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37068685

ABSTRACT

Hypoxia, or low dissolved oxygen (DO) is a common outcome of excess nitrogen and phosphorus delivered to coastal waterbodies. Shallow and highly productive estuaries are particularly susceptible to diel-cycling hypoxia, which can exhibit DO excursions between anoxia (DO ≤1 mg L-1) and supersaturated concentrations within a day. Shallow estuaries exhibiting diel-cycling hypoxia are understudied relative to larger and deeper estuaries, with very few mechanistic models that can predict diel oxygen dynamics. We utilized continuous monitoring data and the Coastal Generalized Ecosystem Model (CGEM) coupled with an Environmental Fluid Dynamics Code (EFDC) hydrodynamic model to simulate diel DO dynamics in Weeks Bay, AL. Low oxygen conditions ranging from anoxia to DO ≤4 mg L-1 were consistently observed and simulated in the lower water column for periods of minutes to >11 h. High frequency observations and model simulations also identified significant vertical gradients in near bottom DO that varied as much as 0.8 to 3.1 mg L-1 within 0.4 m from the bottom. This spatiotemporal variability presents unique challenges to adequately quantify DO dynamics and the potential exposure of aquatic life to low oxygen conditions. Our results demonstrate the need for detailed measurements to adequately quantify the complex DO dynamics in shallow estuaries. We also demonstrate that simulation models can be successfully applied to evaluate diel oxygen dynamics in complex estuarine environments when calibrated with fine time scale data and effective parameterization of water column and benthic metabolic processes.


Subject(s)
Estuaries , Oxygen , Humans , Oxygen/analysis , Ecosystem , Hypoxia , Water
10.
Front Plant Sci ; 14: 1093913, 2023.
Article in English | MEDLINE | ID: mdl-36778706

ABSTRACT

Plant protein phosphatase 2C (PP2C) play important roles in response to salt stress by influencing metabolic processes, hormone levels, growth factors, etc. Members of the PP2C family have been identified in many plant species. However, they are rarely reported in peanut. In this study, 178 PP2C genes were identified in peanut, which were unevenly distributed across the 20 chromosomes, with segmental duplication in 78 gene pairs. AhPP2Cs could be divided into 10 clades (A-J) by phylogenetic analysis. AhPP2Cs had experienced segmental duplications and strong purifying selection pressure. 22 miRNAs from 14 different families were identified, targeting 57 AhPP2C genes. Gene structures and motifs analysis exhibited PP2Cs in subclades AI and AII had high structural and functional similarities. Phosphorylation sites of AhPP2C45/59/134/150/35/121 were predicted in motifs 2 and 4, which located within the catalytic site at the C-terminus. We discovered multiple MYB binding factors and ABA response elements in the promoter regions of the six genes (AhPP2C45/59/134/150/35/121) by cis-elements analysis. GO and KEGG enrichment analysis confirmed AhPP2C-A genes in protein binding, signal transduction, protein modification process response to abiotic stimulus through environmental information processing. Based on RNA-Seq data of 22 peanut tissues, clade A AhPP2Cs showed a varying degree of tissue specificity, of which, AhPP2C35 and AhPP2C121 specifically expressed in seeds, while AhPP2C45/59/134/150 expressed in leaves and roots. qRT-PCR indicated that AhPP2C45 and AhPP2C134 displayed significantly up-regulated expression in response to salt stress. These results indicated that AhPP2C45 and AhPP2C134 could be candidate PP2Cs conferring salt tolerance. These results provide further insights into the peanut PP2C gene family and indicate PP2Cs potentially involved in the response to salt stress, which can now be further investigated in peanut breeding efforts to obtain cultivars with improved salt tolerance.

11.
Chemosphere ; 313: 137434, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36462568

ABSTRACT

Controlling water pollution by phosphorus (P) and satisfying high demand of P fertilizer in agriculture are two global challenges for sustainable development. This paper presents a novel application of iron modified biochar as an adsorbent to recover P from wastewater and reuse it as P fertilizer. Granular iron biochar (GIB) and ball milled powder iron biochar (PIB) were prepared from pinewood pretreated with iron salt. The biochars were characterized to determine their surface properties. Their effectiveness in P removal from wastewater was evaluated with packed column filters for GIB and continuous flow reactors for PIB. The spent biochar was tested to determine if it is safe for agricultural application as alternative P fertilizer. The results showed that GIB and PIB were highly porous, had high specific surface area (385 and 331 m2 g-1, respectively), and contained high levels of iron (mainly γ-Fe2O3). Both GIB and PIB showed excellent performance for P removal from wastewater. The P adsorption capacity of GIB in the column filter was 16 times larger than that of sand. A fast P adsorption kinetic rate (0.144 min-1) was observed for PIB in the flow reactor. The spent biochars showed no negative effects on bean germination or even some positive effects on seedling growth, indicating they can be safely used as P fertilizer. This study provides the technical basis of a sustainable wastewater treatment strategy that can capture the full values of water, P, and biochar.


Subject(s)
Wastewater , Water Pollutants, Chemical , Iron , Phosphorus , Fertilizers , Charcoal , Adsorption , Water Pollutants, Chemical/analysis
12.
Estuaries Coast ; 45: 1615-1630, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-36505267

ABSTRACT

In shallow estuaries, fluctuations in bottom dissolved oxygen (DO) at diel (24 h) timescales are commonly attributed to cycles of net production and respiration. However, bottom DO can also be modulated by physical processes, such as tides and wind, that vary at or near diel timescales. Here, we examine processes affecting spatiotemporal variations in diel-cycling DO in Escambia Bay, a shallow estuary along the Gulf of Mexico. We collected continuous water quality measurements in the upper and middle reaches of the Bay following relatively high (> 850 m3 s-1) and low (< 175 m3 s-1) springtime freshwater discharge. Variations in diel-cycling amplitude over time were estimated using the continuous wavelet transform, and correlations between DO and biophysical processes at diel timescales were examined using wavelet coherence. Our results reveal that freshwater discharge modulated inter-annual variations in the spatial extent and duration of summertime hypoxia through its effect on vertical density stratification. In the absence of strong stratification (> 15 kg m-3), vertical mixing by tropic tides and sea breeze enhanced diel fluctuations in deeper areas near the channel, while in shallower areas the largest fluctuations were associated with irradiance. Our findings suggest that processes affecting diel-cycling DO in the bottom layer can vary over a relatively short spatial extent less than 2 km and with relatively small changes in bottom elevation of 1 m or less. Implications for water quality monitoring were illustrated by subsampling DO timeseries, which demonstrates how low-frequency measurements may misrepresent water quality in estuaries where diel-cycling DO is common. In these systems, adequate assessment of hypoxia and its aquatic life impacts requires continuous measurements that capture the variation in DO at diel timescales.

13.
Chemosphere ; 305: 135475, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35760137

ABSTRACT

In this study, biochar derived from bamboo pretreated with aluminum salt was synthesized for the removal of two sulfonamide antibiotics, sulfamethoxazole (SMX) and sulfapyridine (SPY), from wastewater. Batch sorption experiments showed that Al-modified bamboo biochar (Al-BB-600) removed both sulfonamides effectively with the maximum sorption capacity of 1200-2200 mg/kg. The sorption mechanism was mainly controlled by hydrophobic, π-π, and electrostatic interactions. Fixed bed column experiments with Al-modified biochar packed in different dosages (250, 500 and 1000 mg) and flow rates (1, 2 and 4 mL/min) showed the dosage of 1000 mg and flow rate of 1 mL/min performed the best for the removal of both SMX and SPY from wastewater. Among the breakthrough (BT) models used to evaluate the fixed bed filtration performance of Al-BB-600, the Yan model best described the BT behavior of the two sulfonamides, suggesting that the adsorption process involved multiple rate-liming factors such as mass transfer at the solid surface and diffusion Additionally, the Bed Depth Service Time (BDST) model results indicated that Al-BB-600 can be efficiently used in fixed bed column for the removal of both SMX and SPY in scaled-up continuous wastewater flow operations. Therefore, Al-modified biochar can be considered a reliable sorbent in real-world application for the removal of SMX and SPY from wastewater.


Subject(s)
Sasa , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents/chemistry , Charcoal/chemistry , Sulfamethoxazole/chemistry , Sulfapyridine , Wastewater , Water Pollutants, Chemical/chemistry
14.
Sci Total Environ ; 837: 155797, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35561906

ABSTRACT

The relationship between ingestion of diets amended with a Pb-contaminated soil and the composition of the fecal microbiome was examined in a mouse model. Mice consumed diets amended with a Pb-contaminated soil in its native (untreated) state or after treatment for remediation with phosphoric acid or triple superphosphate alone or in combination with iron-waste material or biosolids compost. Subacute dietary exposure of mice receiving treated soil resulted in modulation of the fecal intestinal flora, which coincided with reduced relative Pb bioavailability in the bone, blood and kidney and differences in Pb speciation compared to untreated soil. Shifts in the relative abundance of several phyla including Verrucomicrobia, Tenericutes, Firmicutes, Proteobacteria, and TM7 (Candidatus Saccharibacteria) were observed. Because the phyla persist in the presence of Pb, it is probable that they are resistant to Pb. This may enable members of the phyla to bind and limit Pb uptake in the intestine. Families Ruminococcaceae, Lachnospiraceae, Erysipelotrichaceae, Verrucomicrobiaceae, Prevotellaceae, Lactobacilaceae, and Bacteroidaceae, which have been linked to health or disease, also were modulated. This study is the first to explore the relationship between the murine fecal microbiome and ingested Pb contaminated soils treated with different remediation options designed to reduce bioavailability. Identifying commonalities in the microbiome that are correlated with more positive health outcomes may serve as biomarkers to assist in the selection of remediation approaches that are more effective and pose less risk.


Subject(s)
Microbiota , Soil Pollutants , Animals , Biological Availability , Eating , Lead/toxicity , Mice , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
15.
Int J Mol Sci ; 23(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35628135

ABSTRACT

Auxin response factors (ARFs) play important roles in plant growth and development; however, research in peanut (Arachis hypogaea L.) is still lacking. Here, 63, 30, and 30 AhARF genes were identified from an allotetraploid peanut cultivar and two diploid ancestors (A. duranensis and A. ipaensis). Phylogenetic tree and gene structure analysis showed that most AhARFs were highly similar to those in the ancestors. By scanning the whole-genome for ARF-recognized cis-elements, we obtained a potential target gene pool of AhARFs, and the further cluster analysis and comparative analysis showed that numerous members were closely related to root development. Furthermore, we comprehensively analyzed the relationship between the root morphology and the expression levels of AhARFs in 11 peanut varieties. The results showed that the expression levels of AhARF14/26/45 were positively correlated with root length, root surface area, and root tip number, suggesting an important regulatory role of these genes in root architecture and potential application values in peanut breeding.


Subject(s)
Arachis , Fabaceae , Arachis/genetics , Indoleacetic Acids , Phylogeny , Plant Breeding
16.
Front Earth Sci ; 10: 1-19, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35300381

ABSTRACT

We present the ensemble method of prescreening-based subset selection to improve ensemble predictions of Earth system models (ESMs). In the prescreening step, the independent ensemble members are categorized based on their ability to reproduce physically-interpretable features of interest that are regional and problem-specific. The ensemble size is then updated by selecting the subsets that improve the performance of the ensemble prediction using decision relevant metrics. We apply the method to improve the prediction of red tide along the West Florida Shelf in the Gulf of Mexico, which affects coastal water quality and has substantial environmental and socioeconomic impacts on the State of Florida. Red tide is a common name for harmful algal blooms that occur worldwide, which result from large concentrations of aquatic microorganisms, such as dinoflagellate Karenia brevis, a toxic single celled protist. We present ensemble method for improving red tide prediction using the high resolution ESMs of the Coupled Model Intercomparison Project Phase 6 (CMIP6) and reanalysis data. The study results highlight the importance of prescreening-based subset selection with decision relevant metrics in identifying non-representative models, understanding their impact on ensemble prediction, and improving the ensemble prediction. These findings are pertinent to other regional environmental management applications and climate services. Additionally, our analysis follows the FAIR Guiding Principles for scientific data management and stewardship such that data and analysis tools are findable, accessible, interoperable, and reusable. As such, the interactive Colab notebooks developed for data analysis are annotated in the paper. This allows for efficient and transparent testing of the results' sensitivity to different modeling assumptions. Moreover, this research serves as a starting point to build upon for red tide management, using the publicly available CMIP, Coordinated Regional Downscaling Experiment (CORDEX), and reanalysis data.

17.
Plants (Basel) ; 11(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35214804

ABSTRACT

Auxin-responsive genes AUX/IAA are important during plant growth and development, but there are few relevant reports in peanut. In this study, 44 AhIAA genes were identified from cultivated peanut, of which 31 genes were expressed in seed at varying degrees. AhIAA-3A, AhIAA-16A and AhIAA-15B were up-regulated, while AhIAA-11A, AhIAA-5B and AhIAA-14B were down-regulated with seed development and maturation. The expression patterns of seven genes, AhIAA-1A, AhIAA-4A, AhIAA-10A, AhIAA-20A, AhIAA-1B, AhIAA-4B and AhIAA-19B, were consistent with the change trend of auxin, and expression in late-maturing variety LM was significantly higher than that in early-maturing EM. Furthermore, allelic polymorphism analysis of AhIAA-1A and AhIAA-1B, which were specifically expressed in seeds, showed that three SNP loci in 3'UTR of AhIAA-1A could effectively distinguish the EM- and LM- type germplasm, providing a basis for breeding markers development. Our results offered a comprehensive understanding of Aux/IAA genes in peanut and provided valuable clues for further investigation of the auxin signal transduction pathway and auxin regulation mechanism in peanut.

18.
Sci Total Environ ; 817: 153016, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35026269

ABSTRACT

Sound environmental management to control marine plastic pollution requires a careful assessment of environmental costs and benefits of replacing single-use plastics with their biodegradable counterparts. This research employs the standard life cycle assessment (LCA) approach to assess and compare the environmental impact of plastic straws made from polypropylene (PP), and its biodegradable alternatives made from polylactic acid (PLA) and paper (PA) in the United States. Eight environmental impact categories, not including marine litter, were analyzed and a composite relative environmental impact index (REI) was derived for quantitative comparison. The results show that US daily consumption of disposable drinking straws (500 million straws daily) may carry significant environmental burdens regardless of straw types, with the feedstock manufacture stage of the life cycle creating most of the contribution. The REI index values were 2.4 for PP straws, 6.4 for PLA straws, and 5.1 for PA straws with landfill and 3.2 for PP straws, 6.8 for PLA straws, and 4.9 for PA straws with incineration. A sensitivity analysis did not show much change in REI with increasing marine litter rate, demonstrating that replacing PP straws with PLA or PA straws for controlling marine plastic pollution would come with environmental costs in other categories. The trade-off can be quantitatively represented by the difference in REI between PP straws and PA or PLA straws. Our analysis also indicates close-loop recycling can greatly reduce the environmental impact of PP straws, serving as a technological development to control plastic pollution. While disposable straws were used as a case study in this work, the findings are extensive to other single-use products.


Subject(s)
Plastics , Recycling , Animals , Environment , Environmental Monitoring , Environmental Pollution , Life Cycle Stages , United States , Waste Products/analysis
19.
J Hazard Mater ; 425: 127921, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34986562

ABSTRACT

This study determined the interactive effects of biochar and lead toxicity on the soil microbial community in a phytoextraction experiment. Arranged with a completely randomized design in a greenhouse, banana liners were planted singly in a sandy soil spiked with Pb(NO3)2 at 0, 400 and 1200 mg kg-1 and amended with bamboo biochar (pyrolyzing at 600 °C) at 0, 1, 3%. Soil samples were taken from triplicated pots five months after planting and measured for (i) content of lead and organic carbon; (ii) lead speciation; and (iii) microbial community composition through 16S rRNA gene sequencing. DNA sequencing results showed that lead and biochar treatments had significant individual and interactive effects on soil microbial dissimilarities from taxonomic levels of phyla to genera. While some specific taxa were lead resistant, biochar addition apparently alleviated lead toxicity and increased their richness (e.g., Alkanibacter, Muciaginibacter, Burkholderiaceae, and Beggiatoaceae). Soil analysis data indicated that biochar not only helped retain more lead in the soil matrix but created a soil environment inducive for transformation of lead into highly insoluble pyromorphite. This study highlights the effectiveness of biochar for lead remediation and the sensitivity of soil microorganisms in sensing changes in soil environment and lead bioavailability.


Subject(s)
Microbiota , Sasa , Soil Pollutants , Charcoal , Lead/toxicity , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/toxicity
20.
Crit Rev Environ Sci Technol ; 53(11): 1148-1172, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-37090929

ABSTRACT

Phosphorus (P) as an essential nutrient for life sustains the productivity of food systems; yet misdirected P often accumulates in wastewater and triggers water eutrophication if not properly treated. Although technologies have been developed to remove P, little attention has been paid to the recovery of P from wastewater. This work provides a comprehensive review of the state-of-the-art P removal technologies in the science of wastewater treatment. Our analyses focus on the mechanisms, removal efficiencies, and recovery potential of four typical water and wastewater treatment processes including precipitation, biological treatment, membrane separation, and adsorption. The design principles, feasibility, operation parameters, and pros & cons of these technologies are analyzed and compared. Perspectives and future research of P removal and recovery are also proposed in the context of paradigm shift to sustainable water treatment technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...