Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 865: 161305, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36592903

ABSTRACT

Two anaerobic reactors with and without Ca2+ were operated at 35 °C to investigate the effects of different H2/CO2 ratios on products and microbial communities. Through the investigation of various parameters, it was shown that the change of pH triggered by the variations of H2/CO2 is the decisive factor affecting the product selection in anaerobic fermentation system. During the biosynthesis of ATP for cell growth and reproduction, protons (H+) were pumped from extracellular to intracellular by proton pump, which caused an increase of intrinsic pH of fermentative system. When the pH below 9.5, the methanogenic pathway was more prevalent. While the pH above 10.0 was conducive to the homoacetogenesis. Microbial community analysis showed that with the changes of H2/CO2 ratio, a turnover had occurred. When the ratio of H2/CO2 was 4, the main methanogen was Methanobacterium with the dominant interspecies electron transfer bacteria (IETB) of Thermovirga and DMER64. The turnover of microbial community occurred when the H2/CO2 ratio was 4.5 and 4.25. The dominant acetogenic microorganisms were norank_o_Clostridia_UCG-014 (homoacetogen) and Natronincola (obligately alkaliphilic acetogen). When the H2/CO2 ratio returned to 4, the dominant methanogens were hydrotropic Methanobacterium and Methanobrevibacter with four interspecies electron transfer bacteria including DMER64, Thermovirga, Dechlorobacter and Achromobacter.


Subject(s)
Bioreactors , Microbiota , Fermentation , Bioreactors/microbiology , Carbon Dioxide/metabolism , Anaerobiosis , Biofuels , Bacteria/metabolism , Protons , Methane/metabolism , Hydrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...