Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 67(28): 7855-7868, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31274310

ABSTRACT

Bee pollen (BP) collected from different floras possesses various potential bioactivities, but the mechanism-related research on anti-inflammatory effects is limited. Here, three types of BP originating from Camellia sinensis L. (BP-Cs), Nelumbo nucifera Gaertn. (BP-Nn), and Brassica campestris L. (BP-Bc) were assessed using molecular and metabolomics methods to determine their anti-inflammatory effects. The differences in polyphenolic abundance of three types of BP extracts were determined by HPLC-DAD/Q-TOF-MS. In vitro anti-inflammatory effects of three BP extracts were evaluated in a lipopolysaccharide (LPS)-induced RAW 264.7 cells model. BP-Cs extract with the most abundant polyphenols was found to be the most effective in reducing inflammation by downregulating inflammatory-related genes expression and blocking the activation of MAPK and NF-κB signaling pathways. Polyphenol-rich BP-Cs was further evaluated for their in vivo anti-inflammatory effect in a LPS-induced acute lung injury mouse model. An UPLC-Q-TOF/MS-based metabolomics approach was applied to analyze metabolite changes in mouse serum. Weshowed that the pretreated BP-Cs extract alleviated inflammation and regulated glycerophospholipid metabolism significantly. Our findings provide a foundation for developing and justifying BP as a potential anti-inflammatory ingredient in functional foods or nutraceutical formulations.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/administration & dosage , Plant Extracts/administration & dosage , Pollen/chemistry , Acute Lung Injury/genetics , Acute Lung Injury/immunology , Animals , Anti-Inflammatory Agents/chemistry , Bees , Brassica/chemistry , Camellia sinensis/chemistry , Chromatography, High Pressure Liquid , Humans , Lipopolysaccharides/adverse effects , Macrophages/drug effects , Macrophages/immunology , Male , Mass Spectrometry , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Nelumbo/chemistry , Plant Extracts/chemistry , Polyphenols/administration & dosage , Polyphenols/chemistry , RAW 264.7 Cells
2.
Food Funct ; 10(7): 3828-3838, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31187840

ABSTRACT

Honeys produced from medicinal plants hold great promise for human health. Herein, we determined the chemical composition and gastrointestinal protective effects of a novel monofloral honey from Prunella vulgaris (PVH). The physicochemical parameters (moisture, sugars, pH, protein content, diastase activity, and hydroxymethylfurfural) of the PVH samples met the criteria specified in European Union regulations and Chinese National Standards. Fifteen phenolic compounds were identified and quantified via high-performance liquid chromatography with a diode array detector and with time of flight tandem mass spectrometry detection (HPLC-DAD/Q-TOF-MS). Rosmarinic acid was found to be a potential marker for PVH identification. Using a dextran sulfate sodium (DSS)-induced acute colitis model, we demonstrated that the administration of PVH (5 g per kg b.w., p.o.) significantly decreased the disease activity index and mitigated colonic histopathological changes in rats. PVH also modulated the gut microbiota composition in the colitic rats, reversing the increase in the Bacteroidetes/Firmicutes ratio and restoring Lactobacillus spp. populations in DSS-challenged rats. The results of this study provide fundamental data on PVH, supporting its future application in the prevention of colitis.


Subject(s)
Colitis, Ulcerative/prevention & control , Dextran Sulfate/adverse effects , Gastrointestinal Microbiome/drug effects , Honey , Plants, Medicinal , Prunella/chemistry , Animals , Bacteroidetes , Colitis, Ulcerative/chemically induced , Colon/metabolism , Colon/pathology , Disease Models, Animal , Firmicutes , Flowers/chemistry , Lactobacillus , Male , Rats , Rats, Sprague-Dawley
3.
Nutrients ; 10(6)2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921812

ABSTRACT

Salvianolic acid A (SAA) is an active phenolic acid derived from Salvia miltiorrhiza Bunge (Danshen). To explore whether SAA has a therapeutic effect against inflammatory bowel disease (IBD), an acute colitis model was induced in rats by administering 3% dextran sodium sulphate (DSS) for one week. SAA in doses of 4 and 8 mg/kg/day was given by tail vein injection during DSS administration. Both dosages of SAA ameliorated the colitis symptoms, with decreases observed in the disease activity index. A high dosage of SAA (8 mg/kg/day) promoted a longer colon length and an improved colonic tissue structure, compared with the DSS-treated rats not receiving SAA. SAA dose-dependently decreased colonic gene expression of pro-inflammatory cytokines (IL-1β, MCP-1 and IL-6). Moreover, a high dosage of SAA protected against DSS-induced damage to tight junctions (TJ) in the rats’ colons, by increasing TJ-related gene expression (ZO-1 and occuldin). Finally, using 16S rRNA phylogenetic sequencing, we found that SAA modulated gut microbiota imbalance during colitis by increasing the gut microbial diversity as well as selectively promoting some probiotic populations, including Akkermansia spp. Our study suggests that SAA is a promising candidate for the treatment of IBD.


Subject(s)
Caffeic Acids/therapeutic use , Colitis/prevention & control , Dextran Sulfate/toxicity , Lactates/therapeutic use , Animals , Caffeic Acids/chemistry , Colitis/chemically induced , Cytokines/genetics , Cytokines/metabolism , Drugs, Chinese Herbal/therapeutic use , Gene Expression Regulation/drug effects , Inflammation/metabolism , Lactates/chemistry , Male , Molecular Structure , Random Allocation , Rats , Rats, Sprague-Dawley , Salvia miltiorrhiza/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...