Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 954121, 2022.
Article in English | MEDLINE | ID: mdl-35903092

ABSTRACT

Although tremendous effort has been exerted to elucidate the pathogenesis of severe COVID-19 cases, the detailed mechanism of moderate cases, which accounts for 90% of all patients, remains unclear yet, partly limited by lacking the biopsy tissues. Here, we established the COVID-19 infection model in cynomolgus macaques (CMs), monitored the clinical and pathological features, and analyzed underlying pathogenic mechanisms at early infection stage by performing proteomic and metabolomic profiling of lung tissues and sera samples from COVID-19 CMs models. Our data demonstrated that innate immune response, neutrophile and platelet activation were mainly dysregulated in COVID-19 CMs. The symptom of neutrophilia, lymphopenia and massive "cytokines storm", main features of severe COVID-19 patients, were greatly weakened in most of the challenged CMs, which are more semblable as moderate patients. Thus, COVID-19 model in CMs is rational to understand the pathogenesis of moderate COVID-19 and may be a candidate model to assess the safety and efficacy of therapeutics and vaccines against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19 Vaccines , Humans , Macaca fascicularis , Proteomics
2.
iScience ; 25(6): 104350, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35529312

ABSTRACT

To date, intermediate hosts of SARS-CoV-2 remain obscure and controversial. Several studies have shown that SARS-CoV-2-related pangolin coronavirus (Pangolin-CoV) has a high sequence similarity to SARS-CoV-2 and might be the initial source of SARS-CoV-2; however, the biological characteristics of Pangolin-CoV are still largely unknown. In this study, we evaluated the pathogenicity and transmissibility of Pangolin-CoV in Syrian golden hamsters Mesocricetus auratus (Linnaeus, 1758) and compared it with SARS-CoV-2. Pangolin-CoV could effectively infect hamsters, showed similar tissue tropism to SARS-CoV-2 and replicated efficiently in the respiratory system and brain. The infected hamsters had no weight loss but had obvious viral shedding and lung pathological injury. Notably, Pangolin-CoV could transmit between hamsters by direct contact but not via aerosols, and the infected hamsters could exhale infectious viral aerosols (>1 µm). These results highlight the importance of continuous monitoring of coronaviruses in pangolins owing to the potential threat of Pangolin-CoV to human health.

3.
Front Cell Infect Microbiol ; 12: 897416, 2022.
Article in English | MEDLINE | ID: mdl-35573774

ABSTRACT

The pandemic of respiratory diseases, such as coronavirus disease 2019 (COVID-19) and influenza, has imposed significant public health and economic burdens on the world. Wearing masks is an effective way to cut off the spread of the respiratory virus. However, due to cultural differences and uncomfortable wearing experiences, not everyone is willing to wear masks; there is an urgent need to find alternatives to masks. In this study, we tested the disinfection effect of a portable ionizer on pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (strain V34) and influenza A virus (strain CA04). Negative ions significantly reduced the concentration of particulate matter in the air above and effectively disinfected viruses stuck to the solid plate at the level of both nucleic acid and virus titer. The disinfection efficiency was >99.8% after 1-h exposure. Moreover, negative ions effectively disinfected aerosolized viruses; the disinfection efficiency was more than 87.77% after purification for 10 min. Furthermore, negative ions had a significant protective effect on susceptible animals exposed to viral aerosols. When the negative ionizer was switched from off to on, the inhalation 50% infective dose (ID50) for golden hamsters challenged with SARS-CoV-2 rose from 9.878 median tissue culture infective dose (TCID50) [95% confidence interval (CI), 6.727-14.013 TCID50] to 43.891 TCID50 (95% CI, 29.31-76.983 TCID50), and the inhalation ID50 for guinea pigs challenged with influenza A virus rose from 6.696 TCID50 (95% CI, 3.251-9.601 TCID50) to 28.284 TCID50 (95% CI, 19.705-40.599 TCID50). In the experiment of transmission between susceptible animals, negative ions 100% inhibited the aerosol transmission of SARS-CoV-2 and influenza A virus. Finally, we tested the safety of negative ion exposure. Balb/c mice exposed to negative ions for 4 weeks showed no abnormalities in body weight, blood routine analysis, and lung pathology. Our study demonstrates that air ions can be used as a safe and effective means of blocking respiratory virus transmission and contribute to pandemic prevention and control.


Subject(s)
COVID-19 , Influenza A virus , Aerosols , Animals , COVID-19/prevention & control , Cricetinae , Guinea Pigs , Ions , Mice , Pandemics/prevention & control , SARS-CoV-2
4.
Sci Rep ; 5: 15928, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26552719

ABSTRACT

H9N2 avian influenza viruses circulate worldwide in poultry and have sporadically infected humans, raising concern whether H9N2 viruses have pandemic potential. Here, we use a guinea pig model to examine whether serial passage results in adaptive viral changes that confer a transmissible phenotype to a wild-type H9N2 virus. After nine serial passages of an H9N2 virus through guinea pigs, productive transmission by direct contact occurred in 2/3 guinea pig pairs. The efficiency of transmission by direct contact increased following the fifteenth passage and occurred in 3/3 guinea pig pairs. In contrast, airborne transmission of the passaged virus was less efficient and occurred in 1/6 guinea pig pairs and 0/6 ferret pairs after the fifteenth passage. Three amino acid substitutions, HA1-Q227P, HA2-D46E, and NP-E434K, were sufficient for contact transmission in guinea pigs (2/3 pairs). The two HA amino acid substitutions enhanced receptor binding to α2,3-linked sialic acid receptors. Additionally, the HA2-D46E substitution increased virus thermostability whereas the NP-E434K mutation enhanced viral RNA polymerase activity in vitro. Our findings suggest that adaptive changes that enhance viral receptor binding, thermostability, and replicative capacity in mammalian cells can collectively enhance the transmissibility of H9N2 AIVs by direct contact in the guinea pig model.


Subject(s)
Influenza A Virus, H9N2 Subtype/physiology , Influenza in Birds/transmission , Animals , Birds , DNA-Directed RNA Polymerases/metabolism , Female , Ferrets , Guinea Pigs , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza in Birds/virology , Male , Mice , Mice, Inbred BALB C , Models, Animal , Mutagenesis, Site-Directed , Nucleoproteins/genetics , Nucleoproteins/metabolism , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Temperature , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence
5.
Mol Med Rep ; 12(4): 5967-72, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26299628

ABSTRACT

The catabolite control protein A (ccpA) regulates the carbon metabolism in Streptococcus suis type 2 and has pleiotropic regulatory functions in bacterial virulence and transcription. The present study systematically investigated ccpA activity in Streptococcus suis type 2 using isobaric tag for relative and absolute quantification (iTRAQ) liquid chromatography­tandem mass spectrometry­based proteomics. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses demonstrated that ccpA is an important protein for the regulation of metabolism, virulence and immune pathways in Streptococcus suis type 2. The present study therefore expanded the current understanding of the effects of ccpA on virulence, metabolic regulation and transcription in Streptococcus suis type 2 and other important pathogens.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Repressor Proteins/metabolism , Streptococcus suis/metabolism , Bacterial Proteins/genetics , Mutation , Proteomics , Repressor Proteins/genetics , Streptococcus suis/genetics , Streptococcus suis/pathogenicity
6.
Exp Ther Med ; 10(1): 127-132, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26170923

ABSTRACT

Catabolite control protein A (CcpA) serves a key function in the catabolism of Streptococcus suis serotype 2 (S. suis 2) by affecting the biological function and metabolic regulatory mechanisms of this bacterium. The aim of the present study was to identify variations in CcpA expression in S. suis 2 using gene expression profile analysis. Using sequencing and functional analysis, CcpA was demonstrated to play a regulatory role in the expression and regulation of virulence genes, carbon metabolism and immunoregulation in S. suis 2. Gene Ontology and Kyto Encyclopedia of Genes and Genomes analyses indicated that CcpA in S. suis 2 is involved in the regulation of multiple metabolic processes. Furthermore, combined analysis of the transcriptome and metabolite data suggested that metabolites varied due to the modulation of gene expression levels under the influence of CcpA regulation. In addition, metabolic network analysis indicated that CcpA impacted carbon metabolism to a certain extent. Therefore, the present study has provided a more comprehensive analysis of the role of CcpA in the metabolic regulation of S. suis 2, which may facilitate future investigation into this mechanism. Furthermore, the results of the present study provide a foundation for further research into the regulatory function of CcpA and associated metabolic pathways in S. suis 2.

7.
Biomed Rep ; 2(5): 709-712, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25054015

ABSTRACT

Streptococcus suis (S. suis) type 2 is an extremely important Gram-positive bacterial pathogen that can cause human or swine endocarditis, meningitis, bronchopneumonia, arthritis and sepsis. Catabolite control protein A (CcpA) is a major transcriptional regulator in S. suis type 2 that functions in catabolite control, specifically during growth on glucose or galactose. The regulation of central metabolism can affect the virulence of bacteria. In the present study, a metabolomics approach was used along with principal components analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA) models and 37 metabolites were found that differed substantially between native S. suis and a mutant lacking CcpA. These results showed that CcpA is an important protein in S. suis type 2 for studying bacterial protein function.

SELECTION OF CITATIONS
SEARCH DETAIL
...