Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 229: 109429, 2023 04.
Article in English | MEDLINE | ID: mdl-36863431

ABSTRACT

The macular carotenoids lutein and zeaxanthin are taken up from the bloodstream into the human retina through a selective process, for which the HDL cholesterol receptor scavenger receptor BI (SR-BI) in the cells of retinal pigment epithelium (RPE) is thought to be a key mediator. However, the mechanism of SR-BI-mediated selective uptake of macular carotenoids is still not fully understood. Here, we investigate possible mechanisms using biological assays and cultured HEK293 cells, a cell line without endogenous SR-BI expression. Binding affinities between SR-BI and various carotenoids were measured by surface plasmon resonance (SPR) spectroscopy, which shows that SR-BI cannot bind lutein or zeaxanthin specifically. Overexpression of SR-BI in HEK293 cells results in more lutein and zeaxanthin taken up than ß-carotene, and this effect can be eliminated by an SR-BI mutant (C384Y) whose cholesterol uptake tunnel is blocked. Next, we determined the effects of HDL and hepatic lipase (LIPC), SR-BI's partners in HDL cholesterol transport, on SR-BI-mediated carotenoid uptake. HDL addition dramatically reduced lutein, zeaxanthin, and ß-carotene in HEK293 cells expressing SR-BI, but the cellular lutein and zeaxanthin are higher than ß-carotene. LIPC addition increases the uptake of all three carotenoids in HDL-treated cells, and promotes the transport of lutein and zeaxanthin better than ß-carotene. Our results suggest that SR-BI and its HDL cholesterol partner HDL and LIPC may be involved in the selective uptake of macular carotenoids.


Subject(s)
Carotenoids , Lutein , Humans , beta Carotene , Carotenoids/metabolism , CD36 Antigens , Cholesterol , Cholesterol, HDL/metabolism , HEK293 Cells , Lutein/pharmacology , Receptors, Scavenger/metabolism , Scavenger Receptors, Class B/genetics , Scavenger Receptors, Class B/metabolism , Zeaxanthins
SELECTION OF CITATIONS
SEARCH DETAIL
...