Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36360992

ABSTRACT

Nowadays, water pollution has become a global issue affecting most countries in the world. Water quality should be monitored to alert authorities on water pollution, so that action can be taken quickly. The objective of the review is to study various conventional and modern methods of monitoring water quality to identify the strengths and weaknesses of the methods. The methods include the Internet of Things (IoT), virtual sensing, cyber-physical system (CPS), and optical techniques. In this review, water quality monitoring systems and process control in several countries, such as New Zealand, China, Serbia, Bangladesh, Malaysia, and India, are discussed. Conventional and modern methods are compared in terms of parameters, complexity, and reliability. Recent methods of water quality monitoring techniques are also reviewed to study any loopholes in modern methods. We found that CPS is suitable for monitoring water quality due to a good combination of physical and computational algorithms. Its embedded sensors, processors, and actuators can be designed to detect and interact with environments. We believe that conventional methods are costly and complex, whereas modern methods are also expensive but simpler with real-time detection. Traditional approaches are more time-consuming and expensive due to the high maintenance of laboratory facilities, involve chemical materials, and are inefficient for on-site monitoring applications. Apart from that, previous monitoring methods have issues in achieving a reliable measurement of water quality parameters in real time. There are still limitations in instruments for detecting pollutants and producing valuable information on water quality. Thus, the review is important in order to compare previous methods and to improve current water quality assessments in terms of reliability and cost-effectiveness.


Subject(s)
Internet of Things , Water Quality , Reproducibility of Results , Water Pollution , Computers
2.
ACS Sens ; 7(4): 914-928, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35377613

ABSTRACT

In this review, the concept of open cavity lasing for ultrasensitive sensing is explored, specifically in driving important innovations as laser-based biosensors─a field mostly dominated by fluorescence-based sensing. Laser-based sensing exhibits higher signal amplification and lower signal-to-noise ratio due to narrow emission lines as well as high sensitivity due to nonlinear components. The versatility of open cavity random lasers for probing analytes directly which is ultrasensitive to small changes in chemical composition and temperature fluctuations paves the path of utilizing narrow emission lines for advanced sensing. The concept of random lasing is first explained followed by a comparison of the different lasing threshold that has been reported. This is followed by a survey of reports on laser-based sensing and more specifically as biosensors. Finally, a perspective on the way forward for open cavity laser-based sensing is put forth.


Subject(s)
Biosensing Techniques , Lasers
SELECTION OF CITATIONS
SEARCH DETAIL
...