Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(9)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867014

ABSTRACT

A pH-sensitive poly(acrylic acid) composite hydrogel was successfully synthesized via gamma irradiation and reinforced with cellulosic materials of different sizes. Cellulose was extracted from rice husks via alkali and bleaching treatment, and an acid hydrolysis treatment was performed to extract cellulose nanocrystals (CNCs). Morphological observation of cellulose and CNCs using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed diameters of 22-123 µm and 5-16 nm, respectively. The swelling properties of the fabricated poly(acrylic acid)/cellulosic hydrogels were found to respond to changes in pH, and CNC-reinforced hydrogels performed better than cellulose-reinforced hydrogels. The highly crystalline CNC provided a greater storage modulus, hence acting as a better reinforcing material for poly(acrylic acid)-based hydrogels. SEM showed that hydrogels reinforced with the CNC nanofillers contained a homogeneous pore distribution and produced better interfacial interactions than those reinforced with the cellulose microfillers, thus performing better as hydrogels. These findings demonstrate that gamma-irradiated poly(acrylic acid) hydrogels reinforced with CNCs exhibit a better stimuli response toward pH than poly(acrylic acid) hydrogels reinforced with cellulose.

2.
Sci Rep ; 10(1): 11342, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647369

ABSTRACT

Eco-friendly materials such as poly(lactic acid) (PLA) and cellulose are gaining considerable interest as suitable substitutes for petroleum-based plastics. Therefore, amorphous cellulose (AC) was fabricated as a new reinforcing material for PLA biocomposites by modifying a microcrystalline cellulose (MCC) structure via milling. In this study, the mechanical properties, thermal properties, and degradability of PLA were analysed to compare the effects of both MCC and AC on PLA. The tensile and impact properties improved at an optimum value with AC at 8 wt% and 4 wt% fibre loading, respectively. Notably, a scanning electron micrograph analysis revealed improved AC fibre-matrix adhesion, compared with MCC fibre-matrix adhesion, as well as excellent interaction between AC and PLA. Both MCC and AC improved the hydrolytic degradation of PLA. Moreover, the biocomposites with AC exhibited superior degradation when the incorporation of AC improved the water absorption efficiency of PLA. These findings can expand AC applications and improve sustainability.

3.
Nanomaterials (Basel) ; 8(10)2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30241416

ABSTRACT

Herein, we describe the use of gamma irradiation to prepare hydrogels comprising α-cellulose and cellulose nanocrystal (CNC)-reinforced gelatin in the absence of crosslinking agents. In this study, cellulose was extracted from rice husks by an alkali and bleaching treatment followed by acid hydrolysis to produce CNC. A semi-interpenetrating network (semi-IPN) of hydrogels was developed by the miscibility between gelatin and cellulosic materials. Compared to those prepared from α-cellulose, hydrogels prepared by dispersion of CNCs exhibited remarkably enhanced stiffness and swelling properties, which was ascribed to the uniform distribution of CNCs and their increased crystallinity. Improved pore structure, arrangement, and rigidity of CNC-reinforced gelatin hydrogels, which induced the swelling mechanism resulting in higher and faster water uptake was observed with a scanning electron microscope (SEM), compared to cellulose-reinforced gelatin hydrogels. Moreover, in vitro drug profiling demonstrated that CNC/gelatin hydrogels exhibit good drug loading/release behavior and are thus suitable for use in drug-delivery applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...