Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 32(6): 1556-66, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25725429

ABSTRACT

The "developmental hourglass" concept suggests that intermediate developmental stages are most resistant to evolutionary changes and that differences between species arise through divergence later in development. This high conservation during middevelopment is illustrated by the "waist" of the hourglass and it represents a low probability of evolutionary change. Earlier molecular surveys both on animals and on plants have shown that the genes expressed at the waist stage are more ancient and more conserved in their expression. The existence of such a developmental hourglass has not been explored in fungi, another eukaryotic kingdom. In this study, we generated a series of transcriptomic data covering the entire lifecycle of a model mushroom-forming fungus, Coprinopsis cinerea, and we observed a molecular hourglass over its development. The "young fruiting body" is the stage that expresses the evolutionarily oldest (lowest transcriptome age index) transcriptome and gives the strongest signal of purifying selection (lowest transcriptome divergence index). We also demonstrated that all three kingdoms-animals, plants, and fungi-display high expression levels of genes in "information storage and processing" at the waist stages, whereas the genes in "metabolism" become more highly expressed later. Besides, the three kingdoms all show underrepresented "signal transduction mechanisms" at the waist stages. The synchronic existence of a molecular "hourglass" across the three kingdoms reveals a mutual strategy for eukaryotes to incorporate evolutionary innovations.


Subject(s)
Agaricales/genetics , Evolution, Molecular , Gene Expression Regulation, Developmental , Fruiting Bodies, Fungal/genetics , Gene Expression Profiling , Microarray Analysis , Models, Genetic , RNA, Fungal/genetics , Transcriptome
2.
BMC Res Notes ; 5: 80, 2012 Jan 31.
Article in English | MEDLINE | ID: mdl-22289569

ABSTRACT

BACKGROUND: Pyrosequencing techniques allow scientists to perform prokaryotic genome sequencing to achieve the draft genomic sequences within a few days. However, the assemblies with shotgun sequencing are usually composed of hundreds of contigs. A further multiplex PCR procedure is needed to fill all the gaps and link contigs into complete chromosomal sequence, which is the basis for prokaryotic comparative genomic studies. In this article, we study various pyrosequencing strategies by simulated assembling from 100 prokaryotic genomes. FINDINGS: Simulation study shows that a single end 454 Jr. run combined with a paired end 454 Jr. run (8 kb library) can produce: 1) ~90% of 100 assemblies with < 10 scaffolds and ~95% of 100 assemblies with < 150 contigs; 2) average contig N50 size is over 331 kb; 3) average single base accuracy is > 99.99%; 4) average false gene duplication rate is < 0.7%; 5) average false gene loss rate is < 0.4%. CONCLUSIONS: A single end 454 Jr. run combined with a paired end 454 Jr. run (8 kb library) is a cost-effective way for prokaryotic whole genome sequencing. This strategy provides solution to produce high quality draft assemblies for most of prokaryotic organisms within days. Due to the small number of assembled scaffolds, the following multiplex PCR procedure (for gap filling) would be easy. As a result, large scale prokaryotic whole genome sequencing projects may be finished within weeks.

SELECTION OF CITATIONS
SEARCH DETAIL
...