Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 265(Pt 1): 130858, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490398

ABSTRACT

Electrospinning has been acknowledged as an efficient technique for the fabrication of continuous nanofibers from polymeric based materials such as polyvinyl alcohol (PVA), cellulose acetate (CA), chitin nanocrystals and others. These nanofibers exhibit chemical and mechanical stability, high porosity, functionality, high surface area and one-dimensional orientation which make it extremely beneficial in industrial application. In recent years, research on chitin - a biopolymer derived from crustacean and fungal cell wall - had gained interest due to its unique structural arrangement, excellent physical and chemical properties, in which make it biodegradable, non-toxic and biocompatible. Chitin has been widely utilized in various applications such as wound dressings, drug delivery, tissue engineering, membranes, food packaging and others. However, chitin is insoluble in most solvents due to its highly crystalline structure. An appropriate solvent system is required for dissolving chitin to maximize its application and produce a fine and smooth electrospun nanofiber. This review focuses on the preparation of chitin polymer solution through dissolution process using different types of solvent system for electrospinning process. The effect of processing parameters also discussed by highlighting some representative examples. Finally, the perspectives are presented regarding the current application of electrospun chitin nanofibers in selected fields.


Subject(s)
Chitin , Tissue Engineering , Chitin/chemistry , Tissue Engineering/methods , Polymers , Polyvinyl Alcohol/chemistry , Solvents
2.
Carbohydr Polym ; 281: 119038, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35074115

ABSTRACT

We evaluate the physiochemical properties of chitin nanopaper derived from three commonly cultivated mushrooms: shiitake (Lentinula edodes), oyster (Pleurotus ostreatus), and enoki (Flammulina velutipes). Mild alkaline extraction of fungal sample yields higher chitin recovery per dry weight (23-35%) compared to crustacean source (9.7%). Our extract readily defibrillates into 15-20 nm width fiber after 5 min blending in domestic kitchen blender, implying a simple and cost-effective nanofiber preparation. Enoki nanopaper was found to be more crystalline and possess slightly higher modulus and tensile strength (Eenoki = 2.83 GPa, σenoki = 51 MPa) compared to oyster and shiitake nanopaper (Eoyster = 2.28 GPa, σoyster = 45 MPa; Eshiitake = 2.59 GPa, σshitake = 43 MPa). However, oyster nanopaper exhibit higher toughness (1.92 MJ/m3) and larger strain at break (5.63%) because of their relatively smaller fibers promote a denser fibrous network that can sustain and absorb higher external loading.


Subject(s)
Flammulina , Pleurotus , Shiitake Mushrooms , Carbohydrates , Chitin/chemistry , Pleurotus/chemistry , Shiitake Mushrooms/chemistry
3.
Asian J Pharm Sci ; 16(3): 280-306, 2021 May.
Article in English | MEDLINE | ID: mdl-34276819

ABSTRACT

Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp. and Pseudomonas sp. Owing to alginate gel forming capability, it is widely used in food, textile and paper industries; and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration. This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays. However, alginate also has limitation. When in contact with physiological environment, alginate could gelate into softer structure, consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts. To cater this problem, wide range of materials have been added to alginate structure, producing sturdy composite materials. For instance, the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material, which not only possesses better mechanical properties compared to native alginate, but also grants additional healing capability and promote better tissue regeneration. In addition, drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent. In this review, preparation of alginate and alginate composite in various forms (fibre, bead, hydrogel, and 3D-printed matrices) used for biomedical application is described first, followed by the discussion of latest trend related to alginate composite utilization in wound dressing, drug delivery, and tissue engineering applications.

4.
Bioresour Technol ; 101(23): 9241-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20674345

ABSTRACT

This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range.


Subject(s)
Bacteria/metabolism , Plant Oils/metabolism , Sewage/microbiology , Surface-Active Agents/chemical synthesis , Analysis of Variance , Bacteria/drug effects , Bacteria/isolation & purification , Culture Media/pharmacology , Models, Biological , Palm Oil
SELECTION OF CITATIONS
SEARCH DETAIL
...