Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 364: 128085, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36220529

ABSTRACT

Microalgae are known for containing high value compounds and its significant role in sequestering carbon dioxide. This review mainly focuses on the emerging microalgae cultivation technologies such as nanomaterials technology that can improve light distribution during microalgae cultivation, attached cultivation and co-cultivation approaches that can improve growth and proliferation of algal cells, biomass yield and lipid accumulation in microalgal. This review includes a comprehensive discussion on the use of microbubbles technology to enhance aerated bubble capacity in photobioreactor to improve microalgal growth. This is followed by discussion on the role of microalgae as phycoremediation agent in removal of contaminants from wastewater, leading to better water quality and high productivity of shellfish. The review also includes techno-economic assessment of microalgae biorefinery technology, which is useful for scaling up the microalgal biofuel production system or integrated microalgae-shellfish cultivation system to support circular economy.

2.
Front Bioeng Biotechnol ; 10: 838445, 2022.
Article in English | MEDLINE | ID: mdl-35646838

ABSTRACT

The marine microalga Nannochloropsis oculata is a bioproducer of eicosapentaenoic acid (EPA), a fatty acid. EPA is incorporated into monogalactosyldiacylglycerol within N. oculata thylakoid membranes, and there is a biotechnological need to remodel EPA synthesis to maximize production and simplify downstream processing. In this study, random mutagenesis and chemical inhibitor-based selection method were devised to increase EPA production and accessibility for improved extraction. Ethyl methanesulfonate was used as the mutagen with selective pressure achieved by using two enzyme inhibitors of lipid metabolism: cerulenin and galvestine-1. Fatty acid methyl ester analysis of a selected fast-growing mutant strain had a higher percentage of EPA (37.5% of total fatty acids) than the wild-type strain (22.2% total fatty acids), with the highest EPA quantity recorded at 68.5 mg/g dry cell weight, while wild-type cells had 48.6 mg/g dry cell weight. Label-free quantitative proteomics for differential protein expression analysis revealed that the wild-type and mutant strains might have alternative channeling pathways for EPA synthesis. The mutant strain showed potentially improved photosynthetic efficiency, thus synthesizing a higher quantity of membrane lipids and EPA. The EPA synthesis pathways could also have deviated in the mutant, where fatty acid desaturase type 2 (13.7-fold upregulated) and lipid droplet surface protein (LDSP) (34.8-fold upregulated) were expressed significantly higher than in the wild-type strain. This study increases the understanding of EPA trafficking in N. oculata, leading to further strategies that can be implemented to enhance EPA synthesis in marine microalgae.

3.
ACS Appl Mater Interfaces ; 9(45): 39197-39208, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29022702

ABSTRACT

At the forefront of developing fluorescent probes for biological imaging applications are enhancements aimed at increasing their brightness, contrast, and photostability, especially toward demanding applications of single-molecule detection. In comparison with existing probes, nanorubies exhibit unlimited photostability and a long emission lifetime (∼4 ms), which enable continuous imaging at single-particle sensitivity in highly scattering and fluorescent biological specimens. However, their wide application as fluorescence probes has so far been hindered by the absence of facile methods for scaled-up high-volume production and molecularly specific targeting. The present work encompasses the large-scale production of colloidally stable nanoruby particles, the demonstration of their biofunctionality and negligible cytotoxicity, as well as the validation of its use for targeted biomolecular imaging. In addition, optical characteristics of nanorubies are found to be comparable or superior to those of state-of-the-art quantum dots. Protocols of reproducible and robust coupling of functional proteins to the nanoruby surface are also presented. As an example, NeutrAvidin-coupled nanoruby show excellent affinity and specificity to µ-opioid receptors in fixed and live cells, allowing wide-field imaging of G-protein coupled receptors with single-particle sensitivity.


Subject(s)
Nanostructures , Biocompatible Materials , Fluorescent Dyes , Quantum Dots , Receptors, G-Protein-Coupled , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...