Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447534

ABSTRACT

Biodegradable films made from biopolymer materials have the potential to replace conventional plastics, which can reduce waste disposal problems. This study aims to explore the potential of different seaweed derivate films consisting of 2% (w/w) of kappaphycus alverezi (KA), kappa carrageenan (KC), refined carrageenan (RC) and semi-refined carrageenan (SRC) as bio-based materials with 0.9% (w/w) glycerol (G), and reinforced with different concentrations of cellulose nanofibers (CNFs) derived from palm waste. A characterization of the glycerol-plasticized seaweed derivatives containing 0, 5, 10, and 15% (v/w) cellulose nanofiber is carried out. The CNFs were studied based on their mechanical, physical and thermal properties including mechanical properties, thickness, moisture content, opacity, water solubility, water vapor permeability and thermal stability. The hydrogen bonding was determined using the DFT calculation generated by Gauss view software version 9.6. The KA + G + 10%CNF film exhibited a surface with slight cracks, roughness, and larger lumps and dents, resulting in inferior mechanical properties (18.50 Mpa), making it unsuitable for biofilm production. The KC + G + 10%CNF film exhibited mechanical properties 24.97 Mpa and water vapor permeability of 1.42311 × 10-11 g s-1 m-1 Pa-1. The RC/G/10%CNF film displayed the highest TS (48.23 MPa) and water vapor permeability (1.4168 × 10-11 g s-1 m-1 Pa-1), but it also had higher solubility in water (66%). In contrast, the SRC + G + 10%CNF film demonstrated excellent mechanical properties (45.98 MPa), low water solubility (42.59%), low water vapor permeability (1.3719 × 10-11 g s-1 m-1 Pa-1), and a high decomposition temperature (250.62 °C) compared to KA, KC and RC. These attributes develop films suitable for various applications, including food packaging with enhanced properties and stability.

2.
Antioxidants (Basel) ; 8(7)2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31269679

ABSTRACT

Active packaging containing natural extracts is a promising innovation to prolong the shelf life of perishable food. The objective of this work was to develop a bioactive edible film from semi-refined carrageenan (SRC) and glycerol (G) as plasticizer incorporated with natural extract. Five Malaysian herbs were evaluated to determine their total phenolic content (TPC) and antioxidant activities. The Persicaria minor (PM) extract demonstrated the highest TPC (1.629 mg GAE/L sample) and radical scavenging activity evaluated by the radicals 2,2'-azinobis [3-ethylbenzothiazoline-6-sulfonic acid] (27.166 mg TE/L sample), 2,2-diphenyl-1-picrylhydrazyl (719.89 mg eq. Trolox/L sample) and α,α'-Azodiisobutyramidine dihydrochloride (5.81 mg TE/L sample). Thus, PM extract was selected for active packaging film at concentrations of 0.4, 1.0 and 2.0% and compared with 0.4% Butylatedhydroxianisole in 2% SRC and 0.9% G film formulation. The meat patties were wrapped in the films and stored under refrigeration (4 ± 2 °C) for 14 days. The film with 2% PM exhibited significantly lower lipid deterioration analysed by the thiobarbituric acid reactive substance assay (p < 0.05) and small changes in % metmyoglobin value which indicated the minimum development of brown colour (p < 0.05). Hence, this film can be used as a packaging material to improve meat quality characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...