Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(4): e25993, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38380021

ABSTRACT

Nitrocellulose (NC) has garnered significant interest among researchers due to its versatile applications, contingent upon the degree of nitration that modifies the cellulose structure. For instance, NC with a high nitrogen content, exceeding 12.5%, finds utility as a key ingredient in propellant formulations, while variants with lower nitrogen content prove suitable for a range of other applications, including the formulation of printing inks, varnishes, and coatings. This communication aims to present the outcomes of our efforts to optimize the nitration reaction of bacterial cellulose to produce high-nitrogen-content NC, employing the response surface methodology (RSM). Our investigation delves into the influence of the mole ratio of sulfuric and nitric acids, reaction temperature, and nitration duration on the nitrogen content of the resultant products. Utilizing a central composite design (CCD), we identified the optimal conditions for NC synthesis. Analysis of variance (ANOVA) underscored the substantial impact of these reaction conditions on the percentage of nitrogen content (%N) yield. By implementing the predicted optimal conditions-namely, a H2SO4:HNO3 mole ratio of 3:1, a reaction temperature of 35 °C, and a reaction period of 22 min-we successfully produced NC with a nitrogen content of 12.64%. Characterization of these products encompassed elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM).

2.
Polymers (Basel) ; 13(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641067

ABSTRACT

The wide availability and diversity of dangerous microbes poses a considerable problem for health professionals and in the development of new healthcare products. Numerous studies have been conducted to develop membrane filters that have antibacterial properties to solve this problem. Without proper protective filter equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection. A combination of nanotechnology and biosorption is expected to offer a new and greener approach to improve the usefulness of polysaccharides as an advanced membrane filtration material. Nanocellulose is among the emerging materials of this century and several studies have proven its use in filtering microbes. Its high specific surface area enables the adsorption of various microbial species, and its innate porosity can separate various molecules and retain microbial objects. Besides this, the presence of an abundant OH groups in nanocellulose grants its unique surface modification, which can increase its filtration efficiency through the formation of affinity interactions toward microbes. In this review, an update of the most relevant uses of nanocellulose as a new class of membrane filters against microbes is outlined. Key advancements in surface modifications of nanocellulose to enhance its rejection mechanism are also critically discussed. To the best of our knowledge, this is the first review focusing on the development of nanocellulose as a membrane filter against microbes.

3.
Polymers (Basel) ; 13(16)2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34451266

ABSTRACT

Conducting polymers have been widely used in electrochemical sensors as receptors of the sensing signal's analytes and transducers. Polypyrrole (PPy) conducting polymers are highlighted due to their good electrical conductive properties, ease in preparation, and flexibility of surface characteristics. The objective of this review paper is to discuss the theoretical background of the two main types of electrochemical detection: impedimetric and voltammetric analysis. It also reviews the application and results obtained from these two electrochemical detections when utilizing PPy as a based sensing material in electrochemical sensor. Finally, related aspects in electrochemical sensor construction using PPy will also be discussed. It is anticipated that this review will provide researchers, especially those without an electrochemical analysis background, with an easy-to-understand summary of the concepts and technologies used in electrochemical sensor research, particularly those interested in utilizing PPy as a based sensing material.

4.
Int J Mol Sci ; 13(9): 10920-10934, 2012.
Article in English | MEDLINE | ID: mdl-23109829

ABSTRACT

Graphene nanoplatelet (xGnP) was investigated as a novel reinforcement filler in mechanical properties for poly(lactic acid) (PLA)/epoxidized palm oil (EPO) blend. PLA/EPO/xGnP green nanocomposites were successfully prepared by melt blending method. PLA/EPO reinforced with xGnP resulted in an increase of up to 26.5% and 60.6% in the tensile strength and elongation at break of the nanocomposites respectively, compared to PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. However, incorporation of xGnP has no effect on the flexural strength and modulus. Impact strength of PLA/5 wt% EPO improved by 73.6% with the presence of 0.5 wt% xGnP loading. Mechanical properties of PLA were greatly improved by the addition of a small amount of graphene nanoplatelets (<1 wt%).


Subject(s)
Graphite/chemistry , Lactic Acid/chemistry , Nanocomposites/chemistry , Plant Oils/chemistry , Polymers/chemistry , Epoxy Compounds/chemistry , Green Chemistry Technology , Nanocomposites/ultrastructure , Palm Oil , Polyesters , Tensile Strength
5.
Int J Mol Sci ; 13(7): 7938-7951, 2012.
Article in English | MEDLINE | ID: mdl-22942682

ABSTRACT

Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn(3)Al LDH. A solution casting method was used to prepare PLA/stearate-Zn(3)Al LDH nanocomposites. The anionic clay Zn(3)Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn(3)Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn(3)Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn(3)Al LDH nanocomposites showed that the presence of around 1.0-3.0 wt % of the stearate-Zn(3)Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn(3)Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA.


Subject(s)
Aluminum Compounds/chemistry , Hydroxides/chemistry , Lactic Acid/chemistry , Nitrates/chemistry , Polymers/chemistry , Stearates/chemistry , Zinc Compounds/chemistry , Elastic Modulus , Environmental Restoration and Remediation , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Nanocomposites/chemistry , Oxidation-Reduction , Polyesters , Tensile Strength , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...