Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Sci Rep ; 13(1): 22930, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129635

ABSTRACT

Time series data collected using wireless sensors, such as temperature and humidity, can provide insight into a building's heating, ventilation, and air conditioning (HVAC) system. Anomalies of these sensor measurements can be used to identify locations of a building that are poorly designed or maintained. Resolving the anomalies present in these locations can improve the thermal comfort of occupants, as well as improve air quality and energy efficiency levels in that space. In this study, we developed a scoring method to identify sensors that shows collective anomalies due to environmental issues. This leads to identifying problematic locations within commercial and institutional buildings. The Dynamic Time Warping (DTW) based anomaly detection method was applied to identify collective anomalies. Then, a score for each sensor was obtained by taking the weighted sum of the number of anomalies, vertical distance to an anomaly point, and dynamic time-warping distance. The weights were optimized using a well-defined simulation study and applying the grid search algorithm. Finally, using a synthetic data set and the results of a case study we could evaluate the performance of our developed scoring method. In conclusion, this newly developed scoring method successfully detects collective anomalies even with data collected over one week, compared to the machine learning models which need more data to train themselves.

2.
J Pharmacokinet Pharmacodyn ; 47(1): 19-45, 2020 02.
Article in English | MEDLINE | ID: mdl-31865474

ABSTRACT

A model was developed for long term metformin tissue retention based upon temporally inclusive models of serum/plasma concentration ([Formula: see text]) having power function tails called the gamma-Pareto type I convolution (GPC) model and was contrasted with biexponential (E2) and noncompartmental (NC) metformin models. GPC models of [Formula: see text] have a peripheral venous first arrival of drug-times parameter, early [Formula: see text] peaks and very slow washouts of [Formula: see text]. The GPC, E2 and NC models were applied to a total of 148 serum samples drawn from 20 min to 72 h following bolus intravenous metformin in seven healthy mongrel dogs. The GPC model was used to calculate area under the curve (AUC), clearance ([Formula: see text]), and functions of time, f(t), for drug mass remaining (M), apparent volume of distribution ([Formula: see text]), as well as [Formula: see text] for [Formula: see text], [Formula: see text] and [Formula: see text]. The GPC models of [Formula: see text] yielded metformin [Formula: see text]-values that were 84.8% of total renal plasma flow (RPF) as estimated from meta-analysis. The GPC [Formula: see text]-values were significantly less than the corresponding NC and E2 [Formula: see text]-values of 104.7% and 123.7% of RPF, respectively. The GPC plasma/serum only model predicted 78.9% drug [Formula: see text] average urinary recovery at 72 h; similar to prior human urine drug [Formula: see text] collection results. The GPC model [Formula: see text] of [Formula: see text], [Formula: see text] and [Formula: see text], were asymptotically proportional to elapsed time, with a constant limiting [Formula: see text] ratio of M/C averaging 7.0 times, a result in keeping with prior simultaneous [Formula: see text] and urine [Formula: see text] collection studies and exhibiting a rate of apparent volume growth of [Formula: see text] that achieved limiting constant values. A simulated constant average drug mass multidosing protocol exhibited increased [Formula: see text] and [Formula: see text] with elapsing time, effects that have been observed experimentally during same-dose multidosing. The GPC heavy-tailed models explained multiple documented phenomena that were unexplained with lighter-tailed models.


Subject(s)
Metformin/pharmacokinetics , Animals , Area Under Curve , Dogs , Female , Humans , Male
3.
Am J Vet Res ; 80(4): 416-424, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30919678

ABSTRACT

OBJECTIVE: To evaluate agreement of 4 methods (Tikhonov gamma variate adaptive regularization of plasma concentration-time curve fitting applied to technetium Tc 99m diethylenetriamine pentaacetic acid [99mTc-DTPA] plasma clearance [Tk-GV], plasma clearance of exogenous creatinine [CrCL], Gates gamma camera-based measurement method with 99mTc-DTPA renal clearance and dynamic scintigraphy [GTS], and iohexol renal clearance assessed with dynamic CT with Patlak plotting [CT-Pp]) for measuring glomerular filtration rates (GFR) in healthy cats. ANIMALS: 7 healthy, laboratory-raised cats. PROCEDURES: Each method for measuring GFR was performed twice in 7 cats at 24-day intervals. The Wilcoxon signed-rank sum test was used to compare the results obtained from the 14 studies for each method. Results from the 4 methods were assessed for agreement and correlation. RESULTS: The median GFR values were 2.75, 2.83, 3.14, and 4.26 mL/min/kg, for Tk-GV, CT-Pp, plasma CrCL, and GTS, respectively. Analysis with Wilcoxon signed-rank sum tests identified significant pairwise differences between results obtained with the Tk-GV versus the plasma CrCL method, the Tk-GV versus the GTS method, and the plasma CrCL versus the GTS method. The least variable method was Tk-GV, with an SD of 1.27 (mL/min/kg). CONCLUSIONS AND CLINICAL RELEVANCE: Findings indicated that Tk-GV yielded GFR measurements comparable with those obtained with CT-Pp, plasma CrCL, and GTS; however, the Tk-GV method yielded the tightest range of results among the methods evaluated.


Subject(s)
Cats/physiology , Glomerular Filtration Rate/veterinary , Kidney Function Tests/veterinary , Technetium Tc 99m Pentetate/blood , Animals , Creatinine/blood , Female , Gamma Cameras/veterinary , Iohexol/metabolism , Kidney Function Tests/methods , Radionuclide Imaging/veterinary , Radiopharmaceuticals
4.
EJNMMI Phys ; 3(1): 31, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27987183

ABSTRACT

BACKGROUND: The convolution approach to thyroid time-activity curve (TAC) data fitting with a gamma distribution convolution (GDC) TAC model following bolus intravenous injection is presented and applied to 99mTc-MIBI data. The GDC model is a convolution of two gamma distribution functions that simultaneously models the distribution and washout kinetics of the radiotracer. The GDC model was fitted to thyroid region of interest (ROI) TAC data from 1 min per frame 99mTc-MIBI image series for 90 min; GDC models were generated for three patients having left and right thyroid lobe and total thyroid ROIs, and were contrasted with washout-only models, i.e., less complete models. GDC model accuracy was tested using 10 Monte Carlo simulations for each clinical ROI. RESULTS: The nine clinical GDC models, obtained from least counting error of counting, exhibited corrected (for 6 parameters) fit errors ranging from 0.998% to 1.82%. The range of all thyroid mean residence times (MRTs) was 212 to 699 min, which from noise injected simulations of each case had an average coefficient of variation of 0.7% and a not statistically significant accuracy error of 0.5% (p = 0.5, 2-sample paired t test). The slowest MRT value (699 min) was from a single thyroid lobe with a tissue diagnosed parathyroid adenoma also seen on scanning as retained marker. The two total thyroid ROIs without substantial pathology had MRT values of 278 and 350 min overlapping a published 99mTc-MIBI thyroid MRT value. One combined value and four unrelated washout-only models were tested and exhibited R-squared values for MRT with the GDC, i.e., a more complete concentration model, ranging from 0.0183 to 0.9395. CONCLUSIONS: The GDC models had a small enough TAC noise-image misregistration (0.8%) that they have a plausible use as simulations of thyroid activity for querying performance of other models such as washout models, for altered ROI size, noise, administered dose, and image framing rates. Indeed, of the four washout-only models tested, no single model approached the apparent accuracy of the GDC model using only 90 min of data. Ninety minutes is a long gamma-camera acquisition time for a patient, but a short a time for most kinetic models. Consequently, the results should be regarded as preliminary.

5.
PLoS One ; 11(7): e0158798, 2016.
Article in English | MEDLINE | ID: mdl-27403663

ABSTRACT

We present a model that generalizes the apparent volume of distribution and half-life as functions of time following intravenous bolus injection. This generalized model defines a time varying apparent volume of drug distribution. The half-lives of drug remaining in the body vary in time and become longer as time elapses, eventually converging to the terminal half-life. Two example fit models were substituted into the general model: biexponential models from the least relative concentration error, and gamma variate models using adaptive regularization for least relative error of clearance. Using adult population parameters from 41 studies of the renal glomerular filtration marker 169Yb-DTPA, simulations of extracellular fluid volumes of 5, 10, 15 and 20 litres and plasma clearances of 40 and 100 ml/min were obtained. Of these models, the adaptively obtained gamma variate models had longer times to 95% of terminal volume and longer half-lives.


Subject(s)
Models, Biological , Technetium Tc 99m Pentetate/administration & dosage , Technetium Tc 99m Pentetate/pharmacokinetics , Adult , Glomerular Filtration Rate , Half-Life , Humans , Injections, Intravenous , Metabolic Clearance Rate , Technetium Tc 99m Pentetate/antagonists & inhibitors
6.
J Phys Chem B ; 120(31): 7641-51, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27404552

ABSTRACT

Coarse-grained molecular dynamics simulations have been used to investigate the effect of dipalmitoylphosphatidylcholine (DPPC) tail group polarity on the structural and phase behavior of both single component and binary mixed monolayers using the MARTINI force field. Surface pressure-area isotherms of single component systems indicate that DPPC monolayers become more expanded as a function of increasing tail group polarity, as observed in experimental measurements in the literature. A combination of radial distribution functions and tilt angle measurements indicate that increasing tail group polarity results in the formation of increasingly disordered monolayers. For the mixed monolayer systems, the time dependence of the radial distribution function as well as average cluster size measurements indicate that phase separation takes place between components of different tail group polarity when the monolayers undergo phase transition into disordered configurations.

7.
Nucl Med Commun ; 37(1): 79-86, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26465802

ABSTRACT

OBJECTIVES: Glomerular filtration rate can be measured as the plasma clearance (CL) of a glomerular filtration rate marker despite body fluid disturbances using numerous, prolonged time samples. We desire a simplified technique without compromised accuracy and precision. MATERIALS AND METHODS: We compared CL values derived from two plasma concentration curve area methods - (a) biexponential fitting [CL (E2)] and (b) Tikhonov adaptively regularized gamma variate fitting [CL (Tk-GV)] - for 4 versus 8 h time samplings from 412 Tc-DTPA studies in 142 patients, mostly paediatric patients, with suspected fluid disturbances. RESULTS: CL (Tk-GV) from four samples/4 h and from nine samples/8 h, both accurately and precisely agreed with the standard, which was taken to be nine samples/8 h CL from (noncompartmental) numerical integration [CL (NI)]. The E2 method, four samples/4 h, and nine samples/8 h median CL values significantly overestimated the CL (NI) values by 4.9 and 3.8%, respectively. CONCLUSION: Compared with the standard, CL (E2) from four samples/4 h and from nine samples/8 h proved to be the most inaccurate and imprecise method examined, and can be replaced by better methods for calculating CL. The CL (Tk-GV) can be used to reduce sampling time in half from 8 to 4 h and from nine to four samples for a precise and accurate, yet more easily tolerated and simplified test.


Subject(s)
Technetium Tc 99m Pentetate/blood , Technetium Tc 99m Pentetate/pharmacokinetics , Adolescent , Adult , Child , Child, Preschool , Female , Glomerular Filtration Rate , Humans , Infant , Male , Metabolic Clearance Rate , Middle Aged , Retrospective Studies , Time Factors , Young Adult
8.
Eur J Nucl Med Mol Imaging ; 43(3): 550-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26537286

ABSTRACT

PURPOSE: Commonly used methods for determining split renal function (SRF) from dynamic scintigraphic data require extrarenal background subtraction and additional correction for intrarenal vascular activity. The use of these additional regions of interest (ROIs) can produce inaccurate results and be challenging, e.g. if the heart is out of the camera field of view. The purpose of this study was to evaluate a new method for determining SRF called the blood pool compensation (BPC) technique, which is simple to implement, does not require extrarenal background correction and intrinsically corrects for intrarenal vascular activity. METHODS: In the BPC method SRF is derived from a parametric plot of the curves generated by one blood-pool and two renal ROIs. Data from 107 patients who underwent (99m)Tc-MAG3 scintigraphy were used to determine SRF values. Values calculated using the BPC method were compared to those obtained with the integral (IN) and Patlak-Rutland (PR) techniques using Bland-Altman plotting and Passing-Bablok regression. The interobserver variability of the BPC technique was also assessed for two observers. RESULTS: The SRF values obtained with the BPC method did not differ significantly from those obtained with the PR method and showed no consistent bias, while SRF values obtained with the IN method showed significant differences with some bias in comparison to those obtained with either the PR or BPC method. No significant interobserver variability was found between two observers calculating SRF using the BPC method. CONCLUSION: The BPC method requires only three ROIs to produce reliable estimates of SRF, was simple to implement, and in this study yielded statistically equivalent results to the PR method with appreciable interobserver agreement. As such, it adds a new reliable method for quality control of monitoring relative kidney function.


Subject(s)
Kidney/diagnostic imaging , Radioisotope Renography/methods , Radiopharmaceuticals/chemistry , Technetium Tc 99m Mertiatide/chemistry , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Image Processing, Computer-Assisted/methods , Liver/diagnostic imaging , Male , Middle Aged , Observer Variation , Quality Control , Radionuclide Imaging , Regression Analysis , Reproducibility of Results , Young Adult
9.
Nucl Med Commun ; 36(4): 392-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25564070

ABSTRACT

OBJECTIVES: The aim of the study was to determine which of three two-parameter fitting functions (exponential, linear-log, and negative-power function of time) most accurately models early chromium-51-EDTA (51Cr-EDTA) plasma concentration data prior to 120 min in patients with cirrhosis and ascites and understand how these fitting functions affect the calculation of the area under the plasma concentration curve (AUC). METHODS: A bolus, antecubital intravenous injection of 2.6 MBq of 51Cr-EDTA was given to 13 patients with cirrhosis and ascites. Up to 16 blood samples were drawn at time points ranging from 5 to 1440 min following injection. The concentration data prior to 120 min were used as reference data. Early time concentration values, estimated by fitting exponential, linear-log, and negative-power functions of time to the time samples at 120, 180, and 240 min, were then compared with reference data. The AUC was calculated for each patient using the exponential, Bröchner-Mortensen-corrected exponential, and linear-log functions, and these values were compared. RESULTS: The withheld, observed plasma concentrations were (a) most accurately estimated by linear-log functions (Wilcoxon P=0.4548), (b) significantly underestimated by exponential functions (Wilcoxon P=0.0002), and (c) significantly overestimated by negative-power functions (Wilcoxon P=0.0034). The relative errors when ranked from best to worst were those for the linear-log (12.0%, 9.0%), exponential (22.9%, 14.2%), and negative-power (31.9%, 48.4%) functions of time, respectively (median, interquartile range). For each patient, the values for AUC calculated by the exponential function differed significantly (range=3.4-15.3%, median=8.3%) from those calculated by the corrected Bröchner-Mortensen exponential, as to a lesser extent did those values calculated using linear-log functions (range=0.4-8.0%, median=3.0%). CONCLUSION: In patients with cirrhosis, linear-log functions were significantly more accurate than exponential or power functions in estimating early time plasma concentrations (<120 min). However, the improved linear-log early time plasma concentration model does not provide as much correction to the total AUC as does the corrected Bröchner-Mortensen exponential method. This is likely because of the large contribution of late time data to the AUC, and future work is suggested to explore the late time fit problem.


Subject(s)
Ascites/blood , Chromium Radioisotopes , Edetic Acid/blood , Liver Cirrhosis/blood , Models, Statistical , Area Under Curve , Ascites/physiopathology , Glomerular Filtration Rate , Humans , Liver Cirrhosis/physiopathology , Time Factors
10.
J Chem Phys ; 140(2): 024505, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24437894

ABSTRACT

Monte Carlo simulation is used to study the dynamical crossover from single file diffusion to normal diffusion in fluids confined to narrow channels. We show that the long time diffusion coefficients for a series of systems involving hard and soft interaction potentials can be described in terms of a hopping time that measures the time it takes for a particle to escape the cage formed by its neighbors in the pore. Free energy barriers for the particle hopping process are calculated and used to show that transition state theory effectively describes the hopping time for all the systems studied over a range of pore radii. Our work suggests that the combination of hopping times and transition state theory offers a useful and general framework to describe the dynamics of highly confined, single file fluids.

11.
J Chem Phys ; 137(10): 104501, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22979868

ABSTRACT

We use Monte Carlo simulations to study the dual-mode diffusion regime of binary and tertiary mixtures of hard spheres confined in narrow cylindrical pores under the influence of an imposed flow. The flow is introduced to the dynamics by adding a small bias directed along the long axis of the pore to the random displacement of each Monte Carlo move. As a result, the motion of the particles in all the components is dominated by a drift velocity that causes the mean squared displacements to increase quadratically in the long time limit. However, an analysis of the mean squared displacements at intermediate time scales shows that components of the mixture above and below their passing thresholds still exhibit behaviors consistent with normal and single-file diffusion, respectively. The difference between the mean squared displacements of the various components is shown to go though a maximum, suggesting there may be an optimal pore diameter for the separation of mixtures exhibiting dual-mode diffusion.


Subject(s)
Molecular Dynamics Simulation , Diffusion , Monte Carlo Method
12.
J Phys Chem B ; 115(46): 13765-70, 2011 Nov 24.
Article in English | MEDLINE | ID: mdl-21988458

ABSTRACT

Molecular dynamics simulations, combined with umbrella sampling, is used to study how gramicidin A (gA) dimers dissociate in the lipid bilayer. The potential of mean force and intermolecular potential energy are computed as functions of the distance between center of masses of the two gA monomers in two directions of separation: parallel to the bilayer surface and parallel to the membrane normal. Results from this study show that the dissociation of gA dimers occurs via lateral displacement of gA monomers followed by tilting of dimers with respect to the lipid bilayer normal. It is found that the dissociation energy of gA dimers in the dimyristoylphosphatidylcholine bilayer is 14 kcal mol(-1) (~22 kT), which is approximately equal to the energy of breaking six intermolecular hydrogen bonds that stabilize the gA channel dimer.


Subject(s)
Gramicidin/chemistry , Lipid Bilayers/chemistry , Dimerization , Dimyristoylphosphatidylcholine/chemistry , Gramicidin/metabolism , Hydrogen Bonding , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Thermodynamics
13.
J Phys Chem B ; 114(35): 11646-53, 2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20704302

ABSTRACT

Understanding the dissociation mechanism of multimeric protein complex ions is important for deciphering gas phase dissociation experiments. The dissociation of cytochrome c' dimer ions in the gas phase was investigated in the present study by constrained molecular dynamics simulations. The center of mass (COM) distance between two monomers was selected as the constrained coordinate. The number of intermolecular hydrogen bonds, smallest distance of intermolecular residuals, value of dipole moments, root-mean-square deviations, and potential energy components of the force field as a function of COM distance were examined for different charge partitionings of the +10 total charge state. These data were rationalized with free energy profiles to produce a qualitative description of the dissociation process. When charges are symmetrically distributed between the monomers in the dimer, dissociation occurs at a well-defined distance with only small structural changes in the monomers. There is an elastic type of stretching that initially resists the separation of the monomers but after dissociation the monomers recoil slightly from this and relax. For asymmetrically distributed charges, the dissociation event is not nearly as well-defined because the more highly charged monomer unfolds before dissociation occurs. It is found in almost all cases, a charged N-terminus tethers this unfolding monomer to its dimer partner by binding in a nonspecific manner. This helps encourage monomer unfolding in the dissociation pathway. It is also shown that while the intermolecular Coulomb repulsion between the monomers is not the largest contribution to the overall potential energy, it dominates the potential energy difference between different charge states.


Subject(s)
Cytochromes c'/chemistry , Gases/chemistry , Dimerization , Hydrogen Bonding , Molecular Dynamics Simulation , Thermodynamics
14.
J Phys Chem A ; 113(16): 3814-21, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19195995

ABSTRACT

Free energies are calculated for the protonated cytochrome c' dimer ion in the gas phase as a function of the center of mass distance between the monomers. A number of different charge partitionings are examined as well as the behavior of the neutral complex. It is found that monomer unfolding competes with complex dissociation and that the relative importance of these two factors depends upon the charge partitioning in the complex. Symmetric charge partitionings preferentially suppress the dissociation barrier relative to unfolding, and complexes tend to dissociate promptly with little structural changes occurring in the monomers. Alternatively, asymmetric charge partitionings preferentially lower the barrier for monomer unfolding relative to the dissociation barrier. In this case, the monomer with the higher charge unfolds before the complex dissociates. For the homodimer considered here, this pathway has a large free energy barrier. The results can be rationalized using schematic two-dimensional free energy surfaces. Additionally, for large multimeric complexes, it is argued that the unfolding and subsequent charging of a single monomer is a favorable process, cooperatively lowering both the unfolding and dissociation barriers at the same time.


Subject(s)
Cytochromes c/chemistry , Gases/chemistry , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Thermodynamics
15.
J Am Soc Mass Spectrom ; 18(12): 2242-53, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17977010

ABSTRACT

A series of calculations, varying from simple electrostatic to more detailed semi-empirical based molecular dynamics ones, were carried out on charged gas phase ions of the cytochrome c(') dimer. The energetics of differing charge states, charge partitionings, and charge configurations were examined in both the low and high charge regimes. As well, preliminary free energy calculations of dissociation barriers are presented. It is shown that one must always consider distributions of charge configurations, once protein relaxation effects are taken into account, and that no single configuration dominates. All these results also indicate that in the high charge limit, the dissociation of protein complex ions is governed by electrostatic repulsion from the net charges, the consequences of which are enumerated and discussed. There are two main trends deriving from this, namely that charges will move so as to approximately maintain constant surface charge density, and that the lowest barrier to dissociation is the one that produces fragment ions with equal charges. In particular, it is shown that the charge-to-mass ratio of a fragment ion is not the key physical parameter in predicting dissociation products. In fact, from the perspective of the division of total charge, many dissociation pathways reported to be "asymmetric" in the literature should be more properly labelled as "symmetric" or "near-symmetric". The Coulomb repulsion model assumes that the timescale for charge transfer is faster than that for protein structural changes, which in turn is faster than that for complex dissociation.


Subject(s)
Cytochromes c'/chemistry , Gases/chemistry , Models, Chemical , Computer Simulation , Models, Molecular , Protein Structure, Secondary , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...