Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 8(1): 1174, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079776

ABSTRACT

Growth of eukaryotic cells is regulated by the target of rapamycin (TOR). The strongest activator of TOR in metazoa is amino acid availability. The established transducers of amino acid sensing to TOR in metazoa are absent in plants. Hence, a fundamental question is how amino acid sensing is achieved in photo-autotrophic organisms. Here we demonstrate that the plant Arabidopsis does not sense the sulfur-containing amino acid cysteine itself, but its biosynthetic precursors. We identify the kinase GCN2 as a sensor of the carbon/nitrogen precursor availability, whereas limitation of the sulfur precursor is transduced to TOR by downregulation of glucose metabolism. The downregulated TOR activity caused decreased translation, lowered meristematic activity, and elevated autophagy. Our results uncover a plant-specific adaptation of TOR function. In concert with GCN2, TOR allows photo-autotrophic eukaryotes to coordinate the fluxes of carbon, nitrogen, and sulfur for efficient cysteine biosynthesis under varying external nutrient supply.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Glucose/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinases/metabolism , Sulfur/chemistry , Arabidopsis/genetics , Autophagy , Genotype , Meristem/metabolism , Phenotype , Plant Development , Plant Roots/metabolism , Protein Biosynthesis , RNA, Ribosomal/metabolism , Signal Transduction , Sulfides
SELECTION OF CITATIONS
SEARCH DETAIL
...